IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v74y2018i1p118-126.html
   My bibliography  Save this article

Cox regression with dependent error in covariates

Author

Listed:
  • Yijian Huang
  • Ching†Yun Wang

Abstract

Many survival studies have error†contaminated covariates due to the lack of a gold standard of measurement. Furthermore, the error distribution can depend on the true covariates but the structure may be difficult to characterize; heteroscedasticity is a common manifestation. We suggest a novel dependent measurement error model with minimal assumptions on the dependence structure, and propose a new functional modeling method for Cox regression when an instrumental variable is available. This proposal accommodates much more general error contamination than existing approaches including nonparametric correction methods of Huang and Wang (2000, Journal of the American Statistical Association 95, 1209–1219; 2006, Statistica Sinica 16, 861–881). The estimated regression coefficients are consistent and asymptotically normal, and a consistent variance estimate is provided for inference. Simulations demonstrate that the procedure performs well even under substantial error contamination. Illustration with a clinical study is provided.

Suggested Citation

  • Yijian Huang & Ching†Yun Wang, 2018. "Cox regression with dependent error in covariates," Biometrics, The International Biometric Society, vol. 74(1), pages 118-126, March.
  • Handle: RePEc:bla:biomet:v:74:y:2018:i:1:p:118-126
    DOI: 10.1111/biom.12741
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.12741
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.12741?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sharon X. Xie & C. Y. Wang & Ross L. Prentice, 2001. "A risk set calibration method for failure time regression by using a covariate reliability sample," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(4), pages 855-870.
    2. Xiao Song & Ching-Yun Wang, 2014. "Proportional Hazards Model With Covariate Measurement Error and Instrumental Variables," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1636-1646, December.
    3. Yi Li & Louise Ryan, 2004. "Survival Analysis With Heterogeneous Covariate Measurement Error," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 724-735, January.
    4. Hu, Chengcheng & Lin, D.Y., 2004. "Semiparametric Failure Time Regression With Replicates of Mismeasured Covariates," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 105-118, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. William Liu, 2023. "A Theory Guide to Using Control Functions to Instrument Hazard Models," Papers 2312.03165, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hsiang Yu & Yu‐Jen Cheng & Ching‐Yun Wang, 2018. "Methods for multivariate recurrent event data with measurement error and informative censoring," Biometrics, The International Biometric Society, vol. 74(3), pages 966-976, September.
    2. William Liu, 2023. "A Theory Guide to Using Control Functions to Instrument Hazard Models," Papers 2312.03165, arXiv.org.
    3. Ching‐Yun Wang & Xiao Song, 2021. "Semiparametric regression calibration for general hazard models in survival analysis with covariate measurement error; surprising performance under linear hazard," Biometrics, The International Biometric Society, vol. 77(2), pages 561-572, June.
    4. Pamela A. Shaw & Ross L. Prentice, 2012. "Hazard Ratio Estimation for Biomarker-Calibrated Dietary Exposures," Biometrics, The International Biometric Society, vol. 68(2), pages 397-407, June.
    5. Ying Yan & Grace Y. Yi, 2016. "Analysis of error-prone survival data under additive hazards models: measurement error effects and adjustments," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(3), pages 321-342, July.
    6. Yanlin Tang & Xinyuan Song & Grace Yun Yi, 2022. "Bayesian analysis under accelerated failure time models with error-prone time-to-event outcomes," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(1), pages 139-168, January.
    7. Jaeun Choi & A. James O'Malley, 2017. "Estimating the causal effect of treatment in observational studies with survival time end points and unmeasured confounding," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(1), pages 159-185, January.
    8. S. Magnussen, 2015. "A fixed count sampling estimator of stem density based on a survival function," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 61(11), pages 485-495.
    9. Eil, David & Lien, Jaimie W., 2014. "Staying ahead and getting even: Risk attitudes of experienced poker players," Games and Economic Behavior, Elsevier, vol. 87(C), pages 50-69.
    10. Xiaomei Liao & David M. Zucker & Yi Li & Donna Spiegelman, 2011. "Survival Analysis with Error-Prone Time-Varying Covariates: A Risk Set Calibration Approach," Biometrics, The International Biometric Society, vol. 67(1), pages 50-58, March.
    11. Li-Pang Chen & Grace Y. Yi, 2021. "Semiparametric methods for left-truncated and right-censored survival data with covariate measurement error," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(3), pages 481-517, June.
    12. Xiao Song & Edward C. Chao & Ching‐Yun Wang, 2023. "A smoothed corrected score approach for proportional hazards model with misclassified discretized covariates induced by error‐contaminated continuous time‐dependent exposure," Biometrics, The International Biometric Society, vol. 79(1), pages 437-448, March.
    13. Wen Ye & Xihong Lin & Jeremy M. G. Taylor, 2008. "Semiparametric Modeling of Longitudinal Measurements and Time-to-Event Data–A Two-Stage Regression Calibration Approach," Biometrics, The International Biometric Society, vol. 64(4), pages 1238-1246, December.
    14. Yuanshan Wu & Yanyuan Ma & Guosheng Yin, 2015. "Smoothed and Corrected Score Approach to Censored Quantile Regression With Measurement Errors," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1670-1683, December.
    15. Ying Yan & Grace Y. Yi, 2016. "A Class of Functional Methods for Error-Contaminated Survival Data Under Additive Hazards Models with Replicate Measurements," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 684-695, April.
    16. Liu, Yanyan & Wu, Yuanshan & Zhou, Haibo, 2010. "Multivariate failure times regression with a continuous auxiliary covariate," Journal of Multivariate Analysis, Elsevier, vol. 101(3), pages 679-691, March.
    17. C. Y. Wang, 2008. "Non‐parametric Maximum Likelihood Estimation for Cox Regression with Subject‐Specific Measurement Error," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(4), pages 613-628, December.
    18. Chi-Chung Wen, 2010. "Semiparametric maximum likelihood estimation in Cox proportional hazards model with covariate measurement errors," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 72(2), pages 199-217, September.
    19. Cheng Zheng & Yingye Zheng, 2019. "Calibrating Variations in Biomarker Measures for Improving Prediction with Time-to-event Outcomes," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(3), pages 477-503, December.
    20. Sandip Barui & Grace Y. Yi, 2020. "Semiparametric methods for survival data with measurement error under additive hazards cure rate models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(3), pages 421-450, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:74:y:2018:i:1:p:118-126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.