IDEAS home Printed from https://ideas.repec.org/a/spr/lifeda/v27y2021i1d10.1007_s10985-020-09511-3.html
   My bibliography  Save this article

Joint modeling of longitudinal continuous, longitudinal ordinal, and time-to-event outcomes

Author

Listed:
  • Khurshid Alam

    (Case Western Reserve University)

  • Arnab Maity

    (NC State University)

  • Sanjoy K. Sinha

    (Carleton University)

  • Dimitris Rizopoulos

    (Erasmus University Medical Center)

  • Abdus Sattar

    (Case Western Reserve University)

Abstract

In this paper, we propose an innovative method for jointly analyzing survival data and longitudinally measured continuous and ordinal data. We use a random effects accelerated failure time model for survival outcomes, a linear mixed model for continuous longitudinal outcomes and a proportional odds mixed model for ordinal longitudinal outcomes, where these outcome processes are linked through a set of association parameters. A primary objective of this study is to examine the effects of association parameters on the estimators of joint models. The model parameters are estimated by the method of maximum likelihood. The finite-sample properties of the estimators are studied using Monte Carlo simulations. The empirical study suggests that the degree of association among the outcome processes influences the bias, efficiency, and coverage probability of the estimators. Our proposed joint model estimators are approximately unbiased and produce smaller mean squared errors as compared to the estimators obtained from separate models. This work is motivated by a large multicenter study, referred to as the Genetic and Inflammatory Markers of Sepsis (GenIMS) study. We apply our proposed method to the GenIMS data analysis.

Suggested Citation

  • Khurshid Alam & Arnab Maity & Sanjoy K. Sinha & Dimitris Rizopoulos & Abdus Sattar, 2021. "Joint modeling of longitudinal continuous, longitudinal ordinal, and time-to-event outcomes," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(1), pages 64-90, January.
  • Handle: RePEc:spr:lifeda:v:27:y:2021:i:1:d:10.1007_s10985-020-09511-3
    DOI: 10.1007/s10985-020-09511-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10985-020-09511-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10985-020-09511-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dimitris Rizopoulos, 2011. "Dynamic Predictions and Prospective Accuracy in Joint Models for Longitudinal and Time-to-Event Data," Biometrics, The International Biometric Society, vol. 67(3), pages 819-829, September.
    2. Li, Kan & Luo, Sheng, 2019. "Bayesian functional joint models for multivariate longitudinal and time-to-event data," Computational Statistics & Data Analysis, Elsevier, vol. 129(C), pages 14-29.
    3. Sungduk Kim & Paul S. Albert, 2016. "A class of joint models for multivariate longitudinal measurements and a binary event," Biometrics, The International Biometric Society, vol. 72(3), pages 917-925, September.
    4. Dimitris Rizopoulos & Geert Verbeke & Emmanuel Lesaffre & Yves Vanrenterghem, 2008. "A Two-Part Joint Model for the Analysis of Survival and Longitudinal Binary Data with Excess Zeros," Biometrics, The International Biometric Society, vol. 64(2), pages 611-619, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Murray, James & Philipson, Pete, 2023. "Fast estimation for generalised multivariate joint models using an approximate EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    2. Murray, James & Philipson, Pete, 2022. "A fast approximate EM algorithm for joint models of survival and multivariate longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 170(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zili & Charalambous, Christiana & Foster, Peter, 2023. "A Gaussian copula joint model for longitudinal and time-to-event data with random effects," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).
    2. Miran A. Jaffa & Ayad A. Jaffa, 2019. "A Likelihood-Based Approach with Shared Latent Random Parameters for the Longitudinal Binary and Informative Censoring Processes," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(3), pages 597-613, December.
    3. Li, Kan & Luo, Sheng, 2019. "Bayesian functional joint models for multivariate longitudinal and time-to-event data," Computational Statistics & Data Analysis, Elsevier, vol. 129(C), pages 14-29.
    4. Weiji Su & Xia Wang & Rhonda D. Szczesniak, 2021. "Flexible link functions in a joint hierarchical Gaussian process model," Biometrics, The International Biometric Society, vol. 77(2), pages 754-764, June.
    5. Michael J. Crowther & Keith R. Abrams & Paul C. Lambert, 2013. "Joint modeling of longitudinal and survival data," Stata Journal, StataCorp LP, vol. 13(1), pages 165-184, March.
    6. Jeremy M. G. Taylor & Yongseok Park & Donna P. Ankerst & Cecile Proust-Lima & Scott Williams & Larry Kestin & Kyoungwha Bae & Tom Pickles & Howard Sandler, 2013. "Real-Time Individual Predictions of Prostate Cancer Recurrence Using Joint Models," Biometrics, The International Biometric Society, vol. 69(1), pages 206-213, March.
    7. van Geloven, N. & He, Y. & Zwinderman, A.H. & Putter, H., 2021. "Estimation of incident dynamic AUC in practice," Computational Statistics & Data Analysis, Elsevier, vol. 154(C).
    8. Xavier Piulachs & Ramon Alemany & Montserrat Guillen, 2014. "A joint longitudinal and survival model with health care usage for insured elderly," Working Papers 2014-07, Universitat de Barcelona, UB Riskcenter.
    9. Medina-Olivares, Victor & Calabrese, Raffaella & Crook, Jonathan & Lindgren, Finn, 2023. "Joint models for longitudinal and discrete survival data in credit scoring," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1457-1473.
    10. Hanze Zhang & Yangxin Huang, 2020. "Quantile regression-based Bayesian joint modeling analysis of longitudinal–survival data, with application to an AIDS cohort study," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(2), pages 339-368, April.
    11. Jaeun Choi & Jianwen Cai & Donglin Zeng, 2017. "Penalized Likelihood Approach for Simultaneous Analysis of Survival Time and Binary Longitudinal Outcome," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(2), pages 190-216, November.
    12. Jiehuan Sun & Jose D. Herazo‐Maya & Philip L. Molyneaux & Toby M. Maher & Naftali Kaminski & Hongyu Zhao, 2019. "Regularized Latent Class Model for Joint Analysis of High‐Dimensional Longitudinal Biomarkers and a Time‐to‐Event Outcome," Biometrics, The International Biometric Society, vol. 75(1), pages 69-77, March.
    13. Jaeun Choi & Donglin Zeng & Andrew F. Olshan & Jianwen Cai, 2018. "Joint modeling of survival time and longitudinal outcomes with flexible random effects," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(1), pages 126-152, January.
    14. Liu, Yue & Liu, Lei & Zhou, Jianhui, 2015. "Joint latent class model of survival and longitudinal data: An application to CPCRA study," Computational Statistics & Data Analysis, Elsevier, vol. 91(C), pages 40-50.
    15. Giulia Barbati & Alessio Farcomeni, 2018. "Prognostic assessment of repeatedly measured time-dependent biomarkers, with application to dilated cardiomyopathy," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(3), pages 545-557, August.
    16. M. H. Hof & J. Z. Musoro & R. B. Geskus & G. H. Struijk & I. J. M. ten Berge & A. H. Zwinderman, 2017. "Simulated maximum likelihood estimation in joint models for multiple longitudinal markers and recurrent events of multiple types, in the presence of a terminal event," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(15), pages 2756-2777, November.
    17. Jahani, Salman & Zhou, Shiyu & Veeramani, Dharmaraj, 2021. "Stochastic prognostics under multiple time-varying environmental factors," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    18. Marlena Maziarz & Patrick Heagerty & Tianxi Cai & Yingye Zheng, 2017. "On longitudinal prediction with time-to-event outcome: Comparison of modeling options," Biometrics, The International Biometric Society, vol. 73(1), pages 83-93, March.
    19. Rizopoulos, Dimitris, 2016. "The R Package JMbayes for Fitting Joint Models for Longitudinal and Time-to-Event Data Using MCMC," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 72(i07).
    20. Eleni†Rosalina Andrinopoulou & Paul H. C. Eilers & Johanna J. M. Takkenberg & Dimitris Rizopoulos, 2018. "Improved dynamic predictions from joint models of longitudinal and survival data with time†varying effects using P†splines," Biometrics, The International Biometric Society, vol. 74(2), pages 685-693, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lifeda:v:27:y:2021:i:1:d:10.1007_s10985-020-09511-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.