IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v74y2018i2p685-693.html
   My bibliography  Save this article

Improved dynamic predictions from joint models of longitudinal and survival data with time†varying effects using P†splines

Author

Listed:
  • Eleni†Rosalina Andrinopoulou
  • Paul H. C. Eilers
  • Johanna J. M. Takkenberg
  • Dimitris Rizopoulos

Abstract

In the field of cardio†thoracic surgery, valve function is monitored over time after surgery. The motivation for our research comes from a study which includes patients who received a human tissue valve in the aortic position. These patients are followed prospectively over time by standardized echocardiographic assessment of valve function. Loss of follow†up could be caused by valve intervention or the death of the patient. One of the main characteristics of the human valve is that its durability is limited. Therefore, it is of interest to obtain a prognostic model in order for the physicians to scan trends in valve function over time and plan their next intervention, accounting for the characteristics of the data. Several authors have focused on deriving predictions under the standard joint modeling of longitudinal and survival data framework that assumes a constant effect for the coefficient that links the longitudinal and survival outcomes. However, in our case, this may be a restrictive assumption. Since the valve degenerates, the association between the biomarker with survival may change over time. To improve dynamic predictions, we propose a Bayesian joint model that allows a time†varying coefficient to link the longitudinal and the survival processes, using P†splines. We evaluate the performance of the model in terms of discrimination and calibration, while accounting for censoring.

Suggested Citation

  • Eleni†Rosalina Andrinopoulou & Paul H. C. Eilers & Johanna J. M. Takkenberg & Dimitris Rizopoulos, 2018. "Improved dynamic predictions from joint models of longitudinal and survival data with time†varying effects using P†splines," Biometrics, The International Biometric Society, vol. 74(2), pages 685-693, June.
  • Handle: RePEc:bla:biomet:v:74:y:2018:i:2:p:685-693
    DOI: 10.1111/biom.12814
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.12814
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.12814?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yu, Menggang & Taylor, Jeremy M.G. & Sandler, Howard M., 2008. "Individual Prediction in Prostate Cancer Studies Using a Joint Longitudinal SurvivalCure Model," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 178-187, March.
    2. Dimitris Rizopoulos, 2011. "Dynamic Predictions and Prospective Accuracy in Joint Models for Longitudinal and Time-to-Event Data," Biometrics, The International Biometric Society, vol. 67(3), pages 819-829, September.
    3. Xiao Song & C. Y. Wang, 2008. "Semiparametric Approaches for Joint Modeling of Longitudinal and Survival Data with Time-Varying Coefficients," Biometrics, The International Biometric Society, vol. 64(2), pages 557-566, June.
    4. Jullion, Astrid & Lambert, Philippe, 2007. "Robust specification of the roughness penalty prior distribution in spatially adaptive Bayesian P-splines models," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2542-2558, February.
    5. Bin Nan & Xihong Lin & Lynda D. Lisabeth & Siobán D. Harlow, 2005. "A Varying-Coefficient Cox Model for the Effect of Age at a Marker Event on Age at Menopause," Biometrics, The International Biometric Society, vol. 61(2), pages 576-583, June.
    6. Dimitris Rizopoulos & Laura A. Hatfield & Bradley P. Carlin & Johanna J. M. Takkenberg, 2014. "Combining Dynamic Predictions From Joint Models for Longitudinal and Time-to-Event Data Using Bayesian Model Averaging," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1385-1397, December.
    7. Michael Schemper & Robin Henderson, 2000. "Predictive Accuracy and Explained Variation in Cox Regression," Biometrics, The International Biometric Society, vol. 56(1), pages 249-255, March.
    8. Francisca Galindo Garre & Aeilko H. Zwinderman & Ronald B. Geskus & Yvo W. J. Sijpkens, 2008. "A joint latent class changepoint model to improve the prediction of time to graft failure," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(1), pages 299-308, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Janet Niekerk & Haakon Bakka & Håvard Rue, 2023. "Stable Non-Linear Generalized Bayesian Joint Models for Survival-Longitudinal Data," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 102-128, February.
    2. Nuzhat B. Ashra & Michael Crowther, 2019. "Developing a postestimation command for joint models in merlin," London Stata Conference 2019 02, Stata Users Group.
    3. Zhang, Zili & Charalambous, Christiana & Foster, Peter, 2023. "A Gaussian copula joint model for longitudinal and time-to-event data with random effects," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dimitris Rizopoulos, 2011. "Dynamic Predictions and Prospective Accuracy in Joint Models for Longitudinal and Time-to-Event Data," Biometrics, The International Biometric Society, vol. 67(3), pages 819-829, September.
    2. Li, Kan & Luo, Sheng, 2019. "Bayesian functional joint models for multivariate longitudinal and time-to-event data," Computational Statistics & Data Analysis, Elsevier, vol. 129(C), pages 14-29.
    3. Rizopoulos, Dimitris, 2016. "The R Package JMbayes for Fitting Joint Models for Longitudinal and Time-to-Event Data Using MCMC," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 72(i07).
    4. Anirudh Tomer & Daan Nieboer & Monique J. Roobol & Ewout W. Steyerberg & Dimitris Rizopoulos, 2019. "Personalized schedules for surveillance of low‐risk prostate cancer patients," Biometrics, The International Biometric Society, vol. 75(1), pages 153-162, March.
    5. Dimitris Rizopoulos & Laura A. Hatfield & Bradley P. Carlin & Johanna J. M. Takkenberg, 2014. "Combining Dynamic Predictions From Joint Models for Longitudinal and Time-to-Event Data Using Bayesian Model Averaging," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1385-1397, December.
    6. Qing Liu & Gong Tang & Joseph P. Costantino & Chung‐Chou H. Chang, 2020. "Landmark proportional subdistribution hazards models for dynamic prediction of cumulative incidence functions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1145-1162, November.
    7. Jeremy M. G. Taylor & Yongseok Park & Donna P. Ankerst & Cecile Proust-Lima & Scott Williams & Larry Kestin & Kyoungwha Bae & Tom Pickles & Howard Sandler, 2013. "Real-Time Individual Predictions of Prostate Cancer Recurrence Using Joint Models," Biometrics, The International Biometric Society, vol. 69(1), pages 206-213, March.
    8. Xavier Piulachs & Ramon Alemany & Montserrat Guillen, 2014. "A joint longitudinal and survival model with health care usage for insured elderly," Working Papers 2014-07, Universitat de Barcelona, UB Riskcenter.
    9. Medina-Olivares, Victor & Calabrese, Raffaella & Crook, Jonathan & Lindgren, Finn, 2023. "Joint models for longitudinal and discrete survival data in credit scoring," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1457-1473.
    10. Jiehuan Sun & Jose D. Herazo‐Maya & Philip L. Molyneaux & Toby M. Maher & Naftali Kaminski & Hongyu Zhao, 2019. "Regularized Latent Class Model for Joint Analysis of High‐Dimensional Longitudinal Biomarkers and a Time‐to‐Event Outcome," Biometrics, The International Biometric Society, vol. 75(1), pages 69-77, March.
    11. Xavier Piulachs & Ramon Alemany & Montserrat Guillen, 2016. "Joint Modelling of Survival and Emergency Medical Care Usage in Spanish Insureds Aged 65+," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-11, April.
    12. An-Min Tang & Nian-Sheng Tang & Dalei Yu, 2023. "Bayesian semiparametric joint model of multivariate longitudinal and survival data with dependent censoring," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(4), pages 888-918, October.
    13. Jonathan E. Gellar & Elizabeth Colantuoni & Dale M. Needham & Ciprian M. Crainiceanu, 2014. "Variable-Domain Functional Regression for Modeling ICU Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1425-1439, December.
    14. Liu, Yue & Liu, Lei & Zhou, Jianhui, 2015. "Joint latent class model of survival and longitudinal data: An application to CPCRA study," Computational Statistics & Data Analysis, Elsevier, vol. 91(C), pages 40-50.
    15. Jaeger, Jonathan & Lambert, Philippe, 2012. "Bayesian penalized smoothing approaches in models specified using affine differential equations with unknown error distributions," LIDAM Discussion Papers ISBA 2012017, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    16. Strasak, Alexander M. & Umlauf, Nikolaus & Pfeiffer, Ruth M. & Lang, Stefan, 2011. "Comparing penalized splines and fractional polynomials for flexible modelling of the effects of continuous predictor variables," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1540-1551, April.
    17. Bremhorst, Vincent & Lambert, Philippe, 2013. "Flexible estimation in cure survival models using Bayesian P-splines," LIDAM Discussion Papers ISBA 2013039, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    18. Kornelis J J van Hateren & Gijs W D Landman & Jarinke F H Arnold & Hanneke Joosten & Klaas H Groenier & Gerjan J Navis & Andrea Sparwasser & Stephan J L Bakker & Henk J G Bilo & Nanne Kleefstra, 2015. "Serum Proenkephalin A Levels and Mortality After Long-Term Follow-Up in Patients with Type 2 Diabetes Mellitus (ZODIAC-32)," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-10, July.
    19. Jahani, Salman & Zhou, Shiyu & Veeramani, Dharmaraj, 2021. "Stochastic prognostics under multiple time-varying environmental factors," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    20. Zhang, Zili & Charalambous, Christiana & Foster, Peter, 2023. "A Gaussian copula joint model for longitudinal and time-to-event data with random effects," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:74:y:2018:i:2:p:685-693. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.