IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v63y2001i4p791-809.html
   My bibliography  Save this article

Generalized case–cohort sampling

Author

Listed:
  • Kani Chen

Abstract

A class of cohort sampling designs, including nested case–control, case–cohort and classical case–control designs involving survival data, is studied through a unified approach using Cox’s proportional hazards model. By finding an optimal sample reuse method via local averaging, a closed form estimating function is obtained, leading directly to the estimators of the regression parameters that are relatively easy to compute and are more efficient than some commonly used estimators in case–cohort and nested case–control studies. A semiparametric efficient estimator can also be found with some further computation. In addition, the class of sampling designs in this study provides a variety of sampling options and relaxes the restrictions of sampling schemes that are currently available.

Suggested Citation

  • Kani Chen, 2001. "Generalized case–cohort sampling," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(4), pages 791-809.
  • Handle: RePEc:bla:jorssb:v:63:y:2001:i:4:p:791-809
    DOI: 10.1111/1467-9868.00313
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9868.00313
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9868.00313?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ying Yan & Haibo Zhou & Jianwen Cai, 2017. "Improving efficiency of parameter estimation in case-cohort studies with multivariate failure time data," Biometrics, The International Biometric Society, vol. 73(3), pages 1042-1052, September.
    2. Erik T. Parner & Per K. Andersen & Morten Overgaard, 2020. "Cumulative risk regression in case–cohort studies using pseudo-observations," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(4), pages 639-658, October.
    3. Guangren Yang & Yanqing Sun & Li Qi & Peter B. Gilbert, 2017. "Estimation of Stratified Mark-Specific Proportional Hazards Models Under Two-Phase Sampling with Application to HIV Vaccine Efficacy Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(1), pages 259-283, June.
    4. Lin, Chanjuan & Zheng, Ming & Yu, Wen & Wu, Mingzhe, 2019. "Robust inference for the proportional hazards model with two-phase cohort sampling data," Statistics & Probability Letters, Elsevier, vol. 153(C), pages 98-103.
    5. Gongjun Xu & Tony Sit & Lan Wang & Chiung-Yu Huang, 2017. "Estimation and Inference of Quantile Regression for Survival Data Under Biased Sampling," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1571-1586, October.
    6. Jing Zhang & Haibo Zhou & Yanyan Liu & Jianwen Cai, 2021. "Conditional screening for ultrahigh-dimensional survival data in case-cohort studies," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(4), pages 632-661, October.
    7. Sangwook Kang & Jianwen Cai, 2009. "Marginal Hazards Regression for Retrospective Studies within Cohort with Possibly Correlated Failure Time Data," Biometrics, The International Biometric Society, vol. 65(2), pages 405-414, June.
    8. Yanqing Sun & Xiyuan Qian & Qiong Shou & Peter B. Gilbert, 2017. "Analysis of two-phase sampling data with semiparametric additive hazards models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(3), pages 377-399, July.
    9. E. Vittinghoff & D. C. Bauer, 2006. "Case-Only Analysis of Treatment–Covariate Interactions in Clinical Trials," Biometrics, The International Biometric Society, vol. 62(3), pages 769-776, September.
    10. Poulami Maitra & Leila D. A. F. Amorim & Jianwen Cai, 2020. "Multiplicative rates model for recurrent events in case-cohort studies," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(1), pages 134-157, January.
    11. Hui Zhang & Douglas E. Schaubel & John D. Kalbfleisch, 2011. "Proportional Hazards Regression for the Analysis of Clustered Survival Data from Case–Cohort Studies," Biometrics, The International Biometric Society, vol. 67(1), pages 18-28, March.
    12. Mingzhe Wu & Ming Zheng & Wen Yu & Ruofan Wu, 2018. "Estimation and variable selection for semiparametric transformation models under a more efficient cohort sampling design," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 570-596, September.
    13. Jichang Yu & Haibo Zhou & Jianwen Cai, 2021. "Accelerated failure time model for data from outcome-dependent sampling," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(1), pages 15-37, January.
    14. Jie-Huei Wang & Chun-Hao Pan & I-Shou Chang & Chao Agnes Hsiung, 2020. "Penalized full likelihood approach to variable selection for Cox’s regression model under nested case–control sampling," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(2), pages 292-314, April.
    15. Zheng, Ming & Zhao, Ziqiang & Yu, Wen, 2013. "Quantile regression analysis of case-cohort data," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 20-34.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:63:y:2001:i:4:p:791-809. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.