IDEAS home Printed from https://ideas.repec.org/a/spr/jtrsec/v10y2017i3d10.1007_s12198-017-0180-y.html
   My bibliography  Save this article

Homeland security and Texas’ high-speed rail

Author

Listed:
  • Steven M. Polunsky

    (Texas A&M Transportation Institute)

Abstract

A private corporation is proposing a high-speed intercity passenger train system to operate between Dallas and Houston, Texas using Japanese technology and methods. This project brings with it unique and unprecedented homeland security issues. A modern high-speed rail system is a network of potential vulnerabilities, and terrorist groups have identified public transportation as desirable targets. This paper reviews potential vulnerabilities and threats, describes the proposed project, and details possible options for safety, security, and intelligence. The author then puts these items in the context of public policy and makes a series of recommendations regarding the government’s role in the provision of homeland security for the proposed train. Specifically, the author recommends the State of Texas set required homeland security standards for high-speed rail projects.

Suggested Citation

  • Steven M. Polunsky, 2017. "Homeland security and Texas’ high-speed rail," Journal of Transportation Security, Springer, vol. 10(3), pages 73-86, December.
  • Handle: RePEc:spr:jtrsec:v:10:y:2017:i:3:d:10.1007_s12198-017-0180-y
    DOI: 10.1007/s12198-017-0180-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12198-017-0180-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12198-017-0180-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nobuo Mimura & Kazuya Yasuhara & Seiki Kawagoe & Hiromune Yokoki & So Kazama, 2011. "Damage from the Great East Japan Earthquake and Tsunami - A quick report," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 16(7), pages 803-818, October.
    2. Nobuo Mimura & Kazuya Yasuhara & Seiki Kawagoe & Hiromune Yokoki & So Kazama, 2011. "Erratum to: Damage from the Great East Japan Earthquake and Tsunami - A quick report," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 16(8), pages 943-945, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexey V. Shvetsov & Svetlana V. Shvetsova, 2017. "Protection of high-speed trains against bomb-carrying unmanned aerial vehicles," Journal of Transportation Security, Springer, vol. 10(3), pages 115-126, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hiroyuki Torita & Norio Tanaka, 2019. "Evaluation of the resistance of coastal Pinus thunbergii Parlat. forests to the tsunami fluid force in Japan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(3), pages 1141-1152, April.
    2. Masahiro Shoji & Yoko Takafuji & Tetsuya Harada, 2020. "Formal education and disaster response of children: evidence from coastal villages in Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 2183-2205, September.
    3. Fumio Ohtake & Katsunori Yamada, 2013. "Appraising the Unhappiness due to the Great East Japan Earthquake: Evidence from Weekly Panel Data on Subjective Well-being," ISER Discussion Paper 0876, Institute of Social and Economic Research, Osaka University.
    4. Karina Landeros-Mugica & Javier Urbina-Soria & Irasema Alcántara-Ayala, 2016. "The good, the bad and the ugly: on the interactions among experience, exposure and commitment with reference to landslide risk perception in México," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1515-1537, February.
    5. Sarah Hall & Jessica Pettersson & William Meservy & Ron Harris & Diannitta Agustinawati & Jennie Olson & Allayna McFarlane, 2017. "Awareness of tsunami natural warning signs and intended evacuation behaviors in Java, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(1), pages 473-496, October.
    6. K. D. C. R. Dissanayaka & Norio Tanaka & T. L. C. Vinodh, 2022. "Integration of Eco-DRR and hybrid defense system on mitigation of natural disasters (Tsunami and Coastal Flooding): a review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 1-28, January.
    7. Liu, Bingsheng & Sheu, Jiuh-Biing & Zhao, Xue & Chen, Yuan & Zhang, Wei, 2020. "Decision making on post-disaster rescue routing problems from the rescue efficiency perspective," European Journal of Operational Research, Elsevier, vol. 286(1), pages 321-335.
    8. Caruso, Germán Daniel, 2017. "The legacy of natural disasters: The intergenerational impact of 100 years of disasters in Latin America," Journal of Development Economics, Elsevier, vol. 127(C), pages 209-233.
    9. Hosoya, Kei, 2016. "Recovery from natural disaster: A numerical investigation based on the convergence approach," Economic Modelling, Elsevier, vol. 55(C), pages 410-420.
    10. Takahiro Yabe & Yoshihide Sekimoto & Kota Tsubouchi & Satoshi Ikemoto, 2019. "Cross-comparative analysis of evacuation behavior after earthquakes using mobile phone data," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-12, February.
    11. He, Xian & Cha, Eun Jeong, 2018. "Modeling the damage and recovery of interdependent critical infrastructure systems from natural hazards," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 162-175.
    12. Xianhua Wu & Yingying Wang & Lingjuan Yang & Shunfeng Song & Guo Wei & Ji Guo, 2016. "Impact of political dispute on international trade based on an international trade Inoperability Input-Output Model: A case study of the 2012 Diaoyu Islands Dispute," The Journal of International Trade & Economic Development, Taylor & Francis Journals, vol. 25(1), pages 47-70, February.
    13. Michał Roman & Katarzyna Bury, 2022. "The Tourist Attractiveness of Tokyo in the Opinion of Surveyed Tourists," Tourism and Hospitality, MDPI, vol. 3(1), pages 1-26, February.
    14. Fumio Ohtake & Katsunori Yamada & Shoko Yamane, 2016. "Appraising Unhappiness in the Wake of the Great East Japan Earthquake," The Japanese Economic Review, Springer, vol. 67(4), pages 403-417, December.
    15. Karina Landeros-Mugica & Javier Urbina-Soria & Irasema Alcántara-Ayala, 2016. "The good, the bad and the ugly: on the interactions among experience, exposure and commitment with reference to landslide risk perception in México," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1515-1537, February.
    16. Jan Oetjen & Vallam Sundar & Sriram Venkatachalam & Klaus Reicherter & Max Engel & Holger Schüttrumpf & Sannasi Annamalaisamy Sannasiraj, 2022. "A comprehensive review on structural tsunami countermeasures," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(3), pages 1419-1449, September.
    17. Puppim de Oliveira, Jose A. & Fra.Paleo, Urbano, 2016. "Lost in participation: How local knowledge was overlooked in land use planning and risk governance in Tōhoku, Japan," Land Use Policy, Elsevier, vol. 52(C), pages 543-551.
    18. Onur Onat & Burak Yön & Mehmet Emin Öncü & Sadık Varolgüneş & Abdulhalim Karaşin & Selim Cemalgil, 2022. "Field reconnaissance and structural assessment of the October 30, 2020, Samos, Aegean Sea earthquake: an example of severe damage due to the basin effect," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 75-117, May.
    19. Akansha Mehrotra & Krishna Singh & M. Nigam & Kirat Pal, 2015. "Detection of tsunami-induced changes using generalized improved fuzzy radial basis function neural network," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(1), pages 367-381, May.
    20. Norio Tanaka & Junji Yagisawa & Satoshi Yasuda, 2013. "Breaking pattern and critical breaking condition of Japanese pine trees on coastal sand dunes in huge tsunami caused by Great East Japan Earthquake," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 423-442, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jtrsec:v:10:y:2017:i:3:d:10.1007_s12198-017-0180-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.