IDEAS home Printed from https://ideas.repec.org/a/spr/jsched/v27y2024i5d10.1007_s10951-024-00808-x.html
   My bibliography  Save this article

Short-term underground mine planning with uncertain activity durations using constraint programming

Author

Listed:
  • Younes Aalian

    (Polytechnique Montréal)

  • Michel Gamache

    (Polytechnique Montréal)

  • Gilles Pesant

    (Polytechnique Montréal)

Abstract

The short-term scheduling of activities in underground mines is an important step in mining operations. This procedure is a challenging optimization problem since it deals with many resources and activities conducted in a confined working space. Moreover, underground mining operations deal with multiple uncertainties such as the variation of activity durations. In this paper, a constraint programming (CP) model is proposed for short-term planning in underground mines. The developed model takes into account the technical requirements of underground operations to build realistic mine schedules. Furthermore, two different approaches are proposed based on the CP model for robust short-term underground mine scheduling. The first approach aims to create a robust schedule using multiple scenarios of the problem. This stochastic CP model enables to find a set of ordered robust sequences of activities performed by each available disjunctive resource over several scenarios. In the second approach, a confidence constraint is introduced in the CP model to specify the probability that the schedule generated would not underestimate the duration of activities. The model allows the mine planner to control the risk level with which an optimized solution should be produced such that it can be implemented given the actual activity durations. The presented approaches are tested on real data sets of an underground gold mine in Canada. An evaluation model is designed to evaluate the robust performance of the proposed models. The experiments demonstrate that both scenario-based and confidence-constraint approaches outperform the deterministic model by generating schedules that are more robust to uncertainties in underground operations.

Suggested Citation

  • Younes Aalian & Michel Gamache & Gilles Pesant, 2024. "Short-term underground mine planning with uncertain activity durations using constraint programming," Journal of Scheduling, Springer, vol. 27(5), pages 423-439, October.
  • Handle: RePEc:spr:jsched:v:27:y:2024:i:5:d:10.1007_s10951-024-00808-x
    DOI: 10.1007/s10951-024-00808-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10951-024-00808-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10951-024-00808-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhen Song & Håkan Schunnesson & Mikael Rinne & John Sturgul, 2015. "Intelligent Scheduling for Underground Mobile Mining Equipment," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-21, June.
    2. Marco Schulze & Julia Rieck & Cinna Seifi & Jürgen Zimmermann, 2016. "Machine scheduling in underground mining: an application in the potash industry," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(2), pages 365-403, March.
    3. Yi, Xiajie & Goossens, Dries & Nobibon, Fabrice Talla, 2020. "Proactive and reactive strategies for football league timetabling," European Journal of Operational Research, Elsevier, vol. 282(2), pages 772-785.
    4. Lamas, Patricio & Goycoolea, Marcos & Pagnoncelli, Bernardo & Newman, Alexandra, 2024. "A target-time-windows technique for project scheduling under uncertainty," European Journal of Operational Research, Elsevier, vol. 314(2), pages 792-806.
    5. Morteza Davari & Erik Demeulemeester, 2019. "Important classes of reactions for the proactive and reactive resource-constrained project scheduling problem," Annals of Operations Research, Springer, vol. 274(1), pages 187-210, March.
    6. Marco Schulze & Jürgen Zimmermann, 2017. "Staff and machine shift scheduling in a German potash mine," Journal of Scheduling, Springer, vol. 20(6), pages 635-656, December.
    7. Morteza Davari & Erik Demeulemeester, 2019. "The proactive and reactive resource-constrained project scheduling problem," Journal of Scheduling, Springer, vol. 22(2), pages 211-237, April.
    8. O’Sullivan, Dónal & Newman, Alexandra, 2015. "Optimization-based heuristics for underground mine scheduling," European Journal of Operational Research, Elsevier, vol. 241(1), pages 248-259.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chimunhu, Prosper & Topal, Erkan & Ajak, Ajak Duany & Asad, Waqar, 2022. "A review of machine learning applications for underground mine planning and scheduling," Resources Policy, Elsevier, vol. 77(C).
    2. Hongbo Li & Linwen Zheng & Hanyu Zhu, 2023. "Resource leveling in projects with flexible structures," Annals of Operations Research, Springer, vol. 321(1), pages 311-342, February.
    3. Cohen, Izack & Postek, Krzysztof & Shtern, Shimrit, 2023. "An adaptive robust optimization model for parallel machine scheduling," European Journal of Operational Research, Elsevier, vol. 306(1), pages 83-104.
    4. Saad Muslet Albogami & Mohd Khairol Anuar Bin Mohd Ariffin & Eris Elianddy Bin Supeni & Kamarul Arifin Ahmad, 2021. "A New Hybrid AHP and Dempster—Shafer Theory of Evidence Method for Project Risk Assessment Problem," Mathematics, MDPI, vol. 9(24), pages 1-30, December.
    5. Nesbitt, Peter & Blake, Lewis R. & Lamas, Patricio & Goycoolea, Marcos & Pagnoncelli, Bernardo K. & Newman, Alexandra & Brickey, Andrea, 2021. "Underground mine scheduling under uncertainty," European Journal of Operational Research, Elsevier, vol. 294(1), pages 340-352.
    6. Cinna Seifi & Marco Schulze & Jürgen Zimmermann, 2021. "Solution procedures for block selection and sequencing in flat-bedded potash underground mines," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(2), pages 409-440, June.
    7. Siyu Tu & Mingtao Jia & Liguan Wang & Shuzhao Feng & Shuang Huang, 2023. "A Dynamic Scheduling Model for Underground Metal Mines under Equipment Failure Conditions," Sustainability, MDPI, vol. 15(9), pages 1-18, April.
    8. Balouka, Noemie & Cohen, Izack, 2021. "A robust optimization approach for the multi-mode resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 291(2), pages 457-470.
    9. Farnaz Torabi Yeganeh & Seyed Hessameddin Zegordi, 2020. "A multi-objective optimization approach to project scheduling with resiliency criteria under uncertain activity duration," Annals of Operations Research, Springer, vol. 285(1), pages 161-196, February.
    10. Maziar Khoshsirat & Seyed Meysam Mousavi, 2024. "A new proactive and reactive approach for resource-constrained project scheduling problem under activity and resource disruption: a scenario-based robust optimization approach," Annals of Operations Research, Springer, vol. 338(1), pages 597-643, July.
    11. Zuo, Fei & Zio, Enrico & Xu, Yue, 2023. "Bi-objective optimization of the scheduling of risk-related resources for risk response," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    12. Bergantiños, Gustavo & Moreno-Ternero, Juan D., 2022. "Monotonicity in sharing the revenues from broadcasting sports leagues," European Journal of Operational Research, Elsevier, vol. 297(1), pages 338-346.
    13. Jianxin Fang & Brenda Cheang & Andrew Lim, 2023. "Problems and Solution Methods of Machine Scheduling in Semiconductor Manufacturing Operations: A Survey," Sustainability, MDPI, vol. 15(17), pages 1-44, August.
    14. Bruni, Maria Elena & Hazır, Öncü, 2024. "A risk-averse distributionally robust project scheduling model to address payment delays," European Journal of Operational Research, Elsevier, vol. 318(2), pages 398-407.
    15. Guillermo Durán, 2021. "Sports scheduling and other topics in sports analytics: a survey with special reference to Latin America," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 125-155, April.
    16. Mousavi, Amin & Sellers, Ewan, 2019. "Optimisation of production planning for an innovative hybrid underground mining method," Resources Policy, Elsevier, vol. 62(C), pages 184-192.
    17. King, Barry & Goycoolea, Marcos & Newman, A., 2017. "Optimizing the open pit-to-underground mining transition," European Journal of Operational Research, Elsevier, vol. 257(1), pages 297-309.
    18. Jie Hou & Guoqing Li & Lianyun Chen & Hao Wang & Nailian Hu, 2022. "Optimization of Truck–Loader Matching Based on a Simulation Method for Underground Mines," Sustainability, MDPI, vol. 15(1), pages 1-14, December.
    19. Nakousi, C. & Pascual, R. & Anani, A. & Kristjanpoller, F. & Lillo, P., 2018. "An asset-management oriented methodology for mine haul-fleet usage scheduling," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 336-344.
    20. Portoleau, Tom & Artigues, Christian & Guillaume, Romain, 2024. "Robust decision trees for the multi-mode project scheduling problem with a resource investment objective and uncertain activity duration," European Journal of Operational Research, Elsevier, vol. 312(2), pages 525-540.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jsched:v:27:y:2024:i:5:d:10.1007_s10951-024-00808-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.