IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v180y2018icp336-344.html
   My bibliography  Save this article

An asset-management oriented methodology for mine haul-fleet usage scheduling

Author

Listed:
  • Nakousi, C.
  • Pascual, R.
  • Anani, A.
  • Kristjanpoller, F.
  • Lillo, P.

Abstract

Different complexities force mining companies to find efficient ways to respond to demand challenges and ensure long-term sustainability. It explains, in part, the increase in the use of prescriptive analytics to optimize physical-asset life-cycle costs and decrease greenhouse gas (GHG) emissions. Mining, being an asset-intensive industry, provides huge improvement opportunities. This is especially true for scheduling practices of mine haulage fleet usage in long term planning. Fleet aging implies important cost increases in maintenance and repair (M&R), and overhauls. Fleets are often heterogeneous in term of truck performance, fuel consumption and GHG emissions. Sub-optimal scheduling decisions may induce severe cost over-runs and increased emissions. This paper proposes an original mixed integer programming formulation to optimize mine haulage equipment scheduling in the long term. The model considers the effects of equipment aging, fuel consumption, payload capacity and cycle times. Our formulation handles different aspects that according to author’s knowledge have not been considered in the literature as a whole: (i) joint minimization of fuel, M&R, and overhaul costs, (ii) reduction of GHG emissions, (iii) heterogeneous equipment performance metrics, (iv) increase in cycle times due to mine aging. The case study shows a cost reduction of 13% in the discounted flows associated with fuel, M&R, and overhauls in a time horizon of 10 years. This figure translates into an NPV gain of 13.1 million USD. Additionally, GHG emissions are reduced by an average of 3470 t/year or 11% overall.

Suggested Citation

  • Nakousi, C. & Pascual, R. & Anani, A. & Kristjanpoller, F. & Lillo, P., 2018. "An asset-management oriented methodology for mine haul-fleet usage scheduling," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 336-344.
  • Handle: RePEc:eee:reensy:v:180:y:2018:i:c:p:336-344
    DOI: 10.1016/j.ress.2018.07.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832018302369
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2018.07.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hartmut Stadtler, 2015. "Production Planning and Scheduling," Springer Texts in Business and Economics, in: Hartmut Stadtler & Christoph Kilger & Herbert Meyr (ed.), Supply Chain Management and Advanced Planning, edition 5, chapter 10, pages 195-211, Springer.
    2. Fayyazbakhsh, Ahmad & Pirouzfar, Vahid, 2017. "Comprehensive overview on diesel additives to reduce emissions, enhance fuel properties and improve engine performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 891-901.
    3. Marco Schulze & Jürgen Zimmermann, 2017. "Staff and machine shift scheduling in a German potash mine," Journal of Scheduling, Springer, vol. 20(6), pages 635-656, December.
    4. Christina N. Burt & Lou Caccetta, 2014. "Equipment Selection for Surface Mining: A Review," Interfaces, INFORMS, vol. 44(2), pages 143-162, April.
    5. C Burt & L Caccetta & P Welgama & L Fouché, 2011. "Equipment selection with heterogeneous fleets for multiple-period schedules," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(8), pages 1498-1509, August.
    6. Marco Schulze & Jürgen Zimmermann, 2011. "Scheduling in the Context of Underground Mining," Operations Research Proceedings, in: Bo Hu & Karl Morasch & Stefan Pickl & Markus Siegle (ed.), Operations Research Proceedings 2010, pages 611-616, Springer.
    7. Alexandra M. Newman & Enrique Rubio & Rodrigo Caro & Andrés Weintraub & Kelly Eurek, 2010. "A Review of Operations Research in Mine Planning," Interfaces, INFORMS, vol. 40(3), pages 222-245, June.
    8. Topal, Erkan & Ramazan, Salih, 2010. "A new MIP model for mine equipment scheduling by minimizing maintenance cost," European Journal of Operational Research, Elsevier, vol. 207(2), pages 1065-1071, December.
    9. Marco de Werk & Burak Ozdemir & Bellal Ragoub & Tyrrell Dunbrack & Mustafa Kumral, 2017. "Cost analysis of material handling systems in open pit mining: Case study on an iron ore prefeasibility study," The Engineering Economist, Taylor & Francis Journals, vol. 62(4), pages 369-386, October.
    10. R Pascual & A Martínez & R Giesen, 2013. "Joint optimization of fleet size and maintenance capacity in a fork-join cyclical transportation system," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(7), pages 982-994, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohanty, Suvendu & Paul, Swarup, 2023. "A frame work for comparative wear based failure analysis of CNG and diesel operated engines," Energy, Elsevier, vol. 269(C).
    2. Liu, Xinyang & Zheng, Zhuoyuan & Büyüktahtakın, İ. Esra & Zhou, Zhi & Wang, Pingfeng, 2021. "Battery asset management with cycle life prognosis," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    3. Meissner, Robert & Rahn, Antonia & Wicke, Kai, 2021. "Developing prescriptive maintenance strategies in the aviation industry based on a discrete-event simulation framework for post-prognostics decision making," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    4. Zbigniew Krysa & Przemysław Bodziony & Michał Patyk, 2021. "Discrete Simulations in Analyzing the Effectiveness of Raw Materials Transportation during Extraction of Low-Quality Deposits," Energies, MDPI, vol. 14(18), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pérez, Juan & Maldonado, Sebastián & González-Ramírez, Rosa, 2018. "Decision support for fleet allocation and contract renegotiation in contracted open-pit mine blasting operations," International Journal of Production Economics, Elsevier, vol. 204(C), pages 59-69.
    2. Zeng, Lanyan & Liu, Shi Qiang & Kozan, Erhan & Corry, Paul & Masoud, Mahmoud, 2021. "A comprehensive interdisciplinary review of mine supply chain management," Resources Policy, Elsevier, vol. 74(C).
    3. Christina N. Burt & Lou Caccetta, 2014. "Equipment Selection for Surface Mining: A Review," Interfaces, INFORMS, vol. 44(2), pages 143-162, April.
    4. Chaowasakoo, Patarawan & Seppälä, Heikki & Koivo, Heikki & Zhou, Quan, 2017. "Improving fleet management in mines: The benefit of heterogeneous match factor," European Journal of Operational Research, Elsevier, vol. 261(3), pages 1052-1065.
    5. Cinna Seifi & Marco Schulze & Jürgen Zimmermann, 2021. "Solution procedures for block selection and sequencing in flat-bedded potash underground mines," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(2), pages 409-440, June.
    6. Marco Schulze & Jürgen Zimmermann, 2017. "Staff and machine shift scheduling in a German potash mine," Journal of Scheduling, Springer, vol. 20(6), pages 635-656, December.
    7. Moradi Afrapoli, Ali & Tabesh, Mohammad & Askari-Nasab, Hooman, 2019. "A multiple objective transportation problem approach to dynamic truck dispatching in surface mines," European Journal of Operational Research, Elsevier, vol. 276(1), pages 331-342.
    8. Lamghari, Amina & Dimitrakopoulos, Roussos, 2012. "A diversified Tabu search approach for the open-pit mine production scheduling problem with metal uncertainty," European Journal of Operational Research, Elsevier, vol. 222(3), pages 642-652.
    9. Rafael Epstein & Marcel Goic & Andrés Weintraub & Jaime Catalán & Pablo Santibáñez & Rodolfo Urrutia & Raúl Cancino & Sergio Gaete & Augusto Aguayo & Felipe Caro, 2012. "Optimizing Long-Term Production Plans in Underground and Open-Pit Copper Mines," Operations Research, INFORMS, vol. 60(1), pages 4-17, February.
    10. Amina Lamghari & Roussos Dimitrakopoulos & Jacques Ferland, 2015. "A hybrid method based on linear programming and variable neighborhood descent for scheduling production in open-pit mines," Journal of Global Optimization, Springer, vol. 63(3), pages 555-582, November.
    11. Iraklis Zahos-Siagos & Vlasios Karathanassis & Dimitrios Karonis, 2018. "Exhaust Emissions and Physicochemical Properties of n -Butanol/Diesel Blends with 2-Ethylhexyl Nitrate (EHN) or Hydrotreated Used Cooking Oil (HUCO) as Cetane Improvers," Energies, MDPI, vol. 11(12), pages 1-20, December.
    12. Jiskani, Izhar Mithal & Cai, Qingxiang & Zhou, Wei & Ali Shah, Syed Ahsan, 2021. "Green and climate-smart mining: A framework to analyze open-pit mines for cleaner mineral production," Resources Policy, Elsevier, vol. 71(C).
    13. King, Barry & Goycoolea, Marcos & Newman, A., 2017. "Optimizing the open pit-to-underground mining transition," European Journal of Operational Research, Elsevier, vol. 257(1), pages 297-309.
    14. Yuhao Zhang & Ziyu Zhao & Lin Bi & Liming Wang & Qing Gu, 2022. "Determination of Truck–Shovel Configuration of Open-Pit Mine: A Simulation Method Based on Mathematical Model," Sustainability, MDPI, vol. 14(19), pages 1-22, September.
    15. K. Sirinanda & M. Brazil & P. Grossman & J. Rubinstein & D. Thomas, 2016. "Gradient-constrained discounted Steiner trees II: optimally locating a discounted Steiner point," Journal of Global Optimization, Springer, vol. 64(3), pages 515-532, March.
    16. Renaud Chicoisne & Daniel Espinoza & Marcos Goycoolea & Eduardo Moreno & Enrique Rubio, 2012. "A New Algorithm for the Open-Pit Mine Production Scheduling Problem," Operations Research, INFORMS, vol. 60(3), pages 517-528, June.
    17. Jyrki Savolainen & Michele Urbani, 2021. "Maintenance optimization for a multi-unit system with digital twin simulation," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 1953-1973, October.
    18. Xia, Tangbin & Xi, Lifeng & Zhou, Xiaojun & Lee, Jay, 2012. "Dynamic maintenance decision-making for series–parallel manufacturing system based on MAM–MTW methodology," European Journal of Operational Research, Elsevier, vol. 221(1), pages 231-240.
    19. Nancel-Penard, Pierre & Morales, Nelson & Cornillier, Fabien, 2022. "A recursive time aggregation-disaggregation heuristic for the multidimensional and multiperiod precedence-constrained knapsack problem: An application to the open-pit mine block sequencing problem," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1088-1099.
    20. Gonzalo Muñoz & Daniel Espinoza & Marcos Goycoolea & Eduardo Moreno & Maurice Queyranne & Orlando Rivera Letelier, 2018. "A study of the Bienstock–Zuckerberg algorithm: applications in mining and resource constrained project scheduling," Computational Optimization and Applications, Springer, vol. 69(2), pages 501-534, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:180:y:2018:i:c:p:336-344. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.