IDEAS home Printed from https://ideas.repec.org/a/spr/jsched/v27y2024i4d10.1007_s10951-023-00780-y.html
   My bibliography  Save this article

Approximating weighted completion time via stronger negative correlation

Author

Listed:
  • Alok Baveja

    (Rutgers Business School)

  • Xiaoran Qu

    (Department of Electrical Engineering and Computer Science
    Montgomery Blair High School)

  • Aravind Srinivasan

    (University of Maryland)

Abstract

Minimizing the weighted completion time of jobs in the unrelated parallel machines model is a fundamental scheduling problem. The first $$(3/2 - c)$$ ( 3 / 2 - c ) –approximation algorithm for this problem, for some constant $$c > 0$$ c > 0 , was obtained in the work of Bansal et al. (SIAM J Comput, 2021). A key ingredient in this work was the first dependent-rounding algorithm with a certain guaranteed amount of negative correlation. We improve upon this guaranteed amount from 1/108 to 1/27, thus also improving upon the constant c in the algorithms of Bansal et al. and Li (SIAM J Comput, 2020) for weighted completion time. Given the now-ubiquitous role played by dependent rounding in scheduling and combinatorial optimization, our improved dependent rounding is also of independent interest.

Suggested Citation

  • Alok Baveja & Xiaoran Qu & Aravind Srinivasan, 2024. "Approximating weighted completion time via stronger negative correlation," Journal of Scheduling, Springer, vol. 27(4), pages 319-328, August.
  • Handle: RePEc:spr:jsched:v:27:y:2024:i:4:d:10.1007_s10951-023-00780-y
    DOI: 10.1007/s10951-023-00780-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10951-023-00780-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10951-023-00780-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Han Hoogeveen & Petra Schuurman & Gerhard J. Woeginger, 2001. "Non-Approximability Results for Scheduling Problems with Minsum Criteria," INFORMS Journal on Computing, INFORMS, vol. 13(2), pages 157-168, May.
    2. Wayne E. Smith, 1956. "Various optimizers for single‐stage production," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 3(1‐2), pages 59-66, March.
    3. A.A. Ageev & M.I. Sviridenko, 2004. "Pipage Rounding: A New Method of Constructing Algorithms with Proven Performance Guarantee," Journal of Combinatorial Optimization, Springer, vol. 8(3), pages 307-328, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ravindran Vijayalakshmi, Vipin & Schröder, Marc & Tamir, Tami, 2024. "Minimizing total completion time with machine-dependent priority lists," European Journal of Operational Research, Elsevier, vol. 315(3), pages 844-854.
    2. Cole, Richard & Correa, Jose & Gkatzelis, Vasillis & Mirrokni, Vahab & Olver, Neil, 2015. "Decentralized utilitarian mechanisms for scheduling games," LSE Research Online Documents on Economics 103081, London School of Economics and Political Science, LSE Library.
    3. Marieke Quant & Marc Meertens & Hans Reijnierse, 2008. "Processing games with shared interest," Annals of Operations Research, Springer, vol. 158(1), pages 219-228, February.
    4. Lili Liu & Guochun Tang & Baoqiang Fan & Xingpeng Wang, 2015. "Two-person cooperative games on scheduling problems in outpatient pharmacy dispensing process," Journal of Combinatorial Optimization, Springer, vol. 30(4), pages 938-948, November.
    5. van Beek, Andries & Malmberg, Benjamin & Borm, Peter & Quant, Marieke & Schouten, Jop, 2021. "Cooperation and Competition in Linear Production and Sequencing Processes," Discussion Paper 2021-011, Tilburg University, Center for Economic Research.
    6. Martin Skutella & Maxim Sviridenko & Marc Uetz, 2016. "Unrelated Machine Scheduling with Stochastic Processing Times," Mathematics of Operations Research, INFORMS, vol. 41(3), pages 851-864, August.
    7. Reijnierse, Hans & Borm, Peter & Quant, Marieke & Meertens, Marc, 2010. "Processing games with restricted capacities," European Journal of Operational Research, Elsevier, vol. 202(3), pages 773-780, May.
    8. Amitai Armon & Iftah Gamzu & Danny Segev, 2014. "Mobile facility location: combinatorial filtering via weighted occupancy," Journal of Combinatorial Optimization, Springer, vol. 28(2), pages 358-375, August.
    9. Borm, Peter & Fiestras-Janeiro, Gloria & Hamers, Herbert & Sanchez, Estela & Voorneveld, Mark, 2002. "On the convexity of games corresponding to sequencing situations with due dates," European Journal of Operational Research, Elsevier, vol. 136(3), pages 616-634, February.
    10. Rubing Chen & Jinjiang Yuan, 2020. "Single-machine scheduling of proportional-linearly deteriorating jobs with positional due indices," 4OR, Springer, vol. 18(2), pages 177-196, June.
    11. Hanane Krim & Rachid Benmansour & David Duvivier & Daoud Aït-Kadi & Said Hanafi, 2020. "Heuristics for the single machine weighted sum of completion times scheduling problem with periodic maintenance," Computational Optimization and Applications, Springer, vol. 75(1), pages 291-320, January.
    12. M. Musegaas & P. E. M. Borm & M. Quant, 2018. "On the convexity of step out–step in sequencing games," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 68-109, April.
    13. Musegaas, M. & Borm, P.E.M. & Quant, M., 2015. "Step out–Step in sequencing games," European Journal of Operational Research, Elsevier, vol. 246(3), pages 894-906.
    14. Atay, Ata & Trudeau, Christian, 2024. "Queueing games with an endogenous number of machines," Games and Economic Behavior, Elsevier, vol. 144(C), pages 104-125.
    15. Miri Gilenson & Dvir Shabtay & Liron Yedidsion & Rohit Malshe, 2021. "Scheduling in multi-scenario environment with an agreeable condition on job processing times," Annals of Operations Research, Springer, vol. 307(1), pages 153-173, December.
    16. Agnetis, Alessandro & Chen, Bo & Nicosia, Gaia & Pacifici, Andrea, 2019. "Price of fairness in two-agent single-machine scheduling problems," European Journal of Operational Research, Elsevier, vol. 276(1), pages 79-87.
    17. Bin Liu & Miaomiao Hu, 2022. "Fast algorithms for maximizing monotone nonsubmodular functions," Journal of Combinatorial Optimization, Springer, vol. 43(5), pages 1655-1670, July.
    18. Yang, Guangjing & Sun, Hao & Hou, Dongshuang & Xu, Genjiu, 2019. "Games in sequencing situations with externalities," European Journal of Operational Research, Elsevier, vol. 278(2), pages 699-708.
    19. Awi Federgruen & Gur Mosheiov, 1993. "Simultaneous optimization of efficiency and performance balance measures in single‐machine scheduling problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 40(7), pages 951-970, December.
    20. De, Parikshit & Mitra, Manipushpak, 2019. "Balanced implementability of sequencing rules," Games and Economic Behavior, Elsevier, vol. 118(C), pages 342-353.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jsched:v:27:y:2024:i:4:d:10.1007_s10951-023-00780-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.