IDEAS home Printed from https://ideas.repec.org/a/spr/jsched/v24y2021i2d10.1007_s10951-020-00652-9.html
   My bibliography  Save this article

Three-machine open shop with a bottleneck machine revisited

Author

Listed:
  • Inna G. Drobouchevitch

    (Korea University Business School)

Abstract

The paper considers the three-machine open shop scheduling problem to minimize the makespan. In the model, each job consists of two operations, one of which is to be processed on the bottleneck machine, which is the same for all jobs. A new linear-time algorithm to find an optimal non-preemptive schedule is developed. The suggested algorithm considerably simplifies the only previously known method as it straightforwardly exploits the structure of the problem and its key components to yield an optimal solution.

Suggested Citation

  • Inna G. Drobouchevitch, 2021. "Three-machine open shop with a bottleneck machine revisited," Journal of Scheduling, Springer, vol. 24(2), pages 197-208, April.
  • Handle: RePEc:spr:jsched:v:24:y:2021:i:2:d:10.1007_s10951-020-00652-9
    DOI: 10.1007/s10951-020-00652-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10951-020-00652-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10951-020-00652-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. P. Williamson & L. A. Hall & J. A. Hoogeveen & C. A. J. Hurkens & J. K. Lenstra & S. V. Sevast'janov & D. B. Shmoys, 1997. "Short Shop Schedules," Operations Research, INFORMS, vol. 45(2), pages 288-294, April.
    2. I.G. Drobouchevitch & V.A. Strusevich, 1999. "A polynomial algorithm for the three‐machineopen shop with a bottleneck machine," Annals of Operations Research, Springer, vol. 92(0), pages 185-210, January.
    3. Bo Chen & Vitaly A. Strusevich, 1993. "Approximation Algorithms for Three-Machine Open Shop Scheduling," INFORMS Journal on Computing, INFORMS, vol. 5(3), pages 321-326, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmadian, Mohammad Mahdi & Khatami, Mostafa & Salehipour, Amir & Cheng, T.C.E., 2021. "Four decades of research on the open-shop scheduling problem to minimize the makespan," European Journal of Operational Research, Elsevier, vol. 295(2), pages 399-426.
    2. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    3. Drobouchevitch, Inna G. & Strusevich, Vitaly A., 2001. "Two-stage open shop scheduling with a bottleneck machine," European Journal of Operational Research, Elsevier, vol. 128(1), pages 159-174, January.
    4. M.A. Kubzin & V.A. Strusevich & J. Breit & G. Schmidt, 2006. "Polynomial‐time approximation schemes for two‐machine open shop scheduling with nonavailability constraints," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(1), pages 16-23, February.
    5. Yuan Yuan & Yan Lan & Ning Ding & Xin Han, 2022. "A PTAS for non-resumable open shop scheduling with an availability constraint," Journal of Combinatorial Optimization, Springer, vol. 43(2), pages 350-362, March.
    6. Bo Chen & Arjen P.A. Vestjens & Gerhard J. Woeginger, 1998. "On-Line Scheduling of Two-Machine Open Shops Where Jobs Arrive Over Time," Journal of Combinatorial Optimization, Springer, vol. 1(4), pages 355-365, December.
    7. Mosheiov, Gur & Sarig, Assaf & Strusevich, Vitaly A & Mosheiff, Jonathan, 2018. "Two-machine flow shop and open shop scheduling problems with a single maintenance window," European Journal of Operational Research, Elsevier, vol. 271(2), pages 388-400.
    8. Kubale, Marek & Nadolski, Adam, 2005. "Chromatic scheduling in a cyclic open shop," European Journal of Operational Research, Elsevier, vol. 164(3), pages 585-591, August.
    9. Han Hoogeveen & Petra Schuurman & Gerhard J. Woeginger, 2001. "Non-Approximability Results for Scheduling Problems with Minsum Criteria," INFORMS Journal on Computing, INFORMS, vol. 13(2), pages 157-168, May.
    10. Liaw, Ching-Fang, 2000. "A hybrid genetic algorithm for the open shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 124(1), pages 28-42, July.
    11. D Bai & L Tang, 2010. "New heuristics for flow shop problem to minimize makespan," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(6), pages 1032-1040, June.
    12. Antonina P. Khramova & Ilya Chernykh, 2021. "A new algorithm for the two-machine open shop and the polynomial solvability of a scheduling problem with routing," Journal of Scheduling, Springer, vol. 24(4), pages 405-412, August.
    13. Zeynep Adak & Mahmure Övül Arıoğlu Akan & Serol Bulkan, 0. "Multiprocessor open shop problem: literature review and future directions," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-23.
    14. Jain, A. S. & Meeran, S., 1999. "Deterministic job-shop scheduling: Past, present and future," European Journal of Operational Research, Elsevier, vol. 113(2), pages 390-434, March.
    15. Koulamas, Christos & Kyparisis, George J., 2015. "The three-machine proportionate open shop and mixed shop minimum makespan problems," European Journal of Operational Research, Elsevier, vol. 243(1), pages 70-74.
    16. Choi, Byung-Cheon & Yoon, Suk-Hun & Chung, Sung-Jin, 2007. "Minimizing maximum completion time in a proportionate flow shop with one machine of different speed," European Journal of Operational Research, Elsevier, vol. 176(2), pages 964-974, January.
    17. Nikhil Bansal & Mohammad Mahdian & Maxim Sviridenko, 2005. "Minimizing Makespan in No-Wait Job Shops," Mathematics of Operations Research, INFORMS, vol. 30(4), pages 817-831, November.
    18. Yuri N. Sotskov, 2020. "Mixed Graph Colorings: A Historical Review," Mathematics, MDPI, vol. 8(3), pages 1-24, March.
    19. Drobouchevitch, I. G. & Strusevich, V. A., 2000. "Heuristics for the two-stage job shop scheduling problem with a bottleneck machine," European Journal of Operational Research, Elsevier, vol. 123(2), pages 229-240, June.
    20. F. Guerriero, 2008. "Hybrid Rollout Approaches for the Job Shop Scheduling Problem," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 419-438, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jsched:v:24:y:2021:i:2:d:10.1007_s10951-020-00652-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.