IDEAS home Printed from https://ideas.repec.org/a/spr/jsched/v23y2020i6d10.1007_s10951-019-00616-8.html
   My bibliography  Save this article

A technical note: fully polynomial time approximation schemes for minimizing the makespan of deteriorating jobs with nonlinear processing times

Author

Listed:
  • Nir Halman

    (Hebrew University of Jerusalem)

Abstract

Fully polynomial time approximation schemes for scheduling deteriorating jobs with nonlinear processing times on a single machine are given via an application of the K-approximation sets and functions technique.

Suggested Citation

  • Nir Halman, 2020. "A technical note: fully polynomial time approximation schemes for minimizing the makespan of deteriorating jobs with nonlinear processing times," Journal of Scheduling, Springer, vol. 23(6), pages 643-648, December.
  • Handle: RePEc:spr:jsched:v:23:y:2020:i:6:d:10.1007_s10951-019-00616-8
    DOI: 10.1007/s10951-019-00616-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10951-019-00616-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10951-019-00616-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wieslaw Kubiak & Steef van de Velde, 1998. "Scheduling deteriorating jobs to minimize makespan," Naval Research Logistics (NRL), John Wiley & Sons, vol. 45(5), pages 511-523, August.
    2. Nir Halman & Diego Klabjan & Mohamed Mostagir & Jim Orlin & David Simchi-Levi, 2009. "A Fully Polynomial-Time Approximation Scheme for Single-Item Stochastic Inventory Control with Discrete Demand," Mathematics of Operations Research, INFORMS, vol. 34(3), pages 674-685, August.
    3. Halman, Nir & Kellerer, Hans & Strusevich, Vitaly A., 2018. "Approximation schemes for non-separable non-linear boolean programming problems under nested knapsack constraints," European Journal of Operational Research, Elsevier, vol. 270(2), pages 435-447.
    4. Nir Halman & Mikhail Y. Kovalyov & Alain Quilliot & Dvir Shabtay & Moshe Zofi, 2019. "Bi-criteria path problem with minimum length and maximum survival probability," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(2), pages 469-489, June.
    5. Wayne E. Smith, 1956. "Various optimizers for single‐stage production," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 3(1‐2), pages 59-66, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stanisław Gawiejnowicz, 2020. "A review of four decades of time-dependent scheduling: main results, new topics, and open problems," Journal of Scheduling, Springer, vol. 23(1), pages 3-47, February.
    2. Nir Halman & Mikhail Y. Kovalyov & Alain Quilliot & Dvir Shabtay & Moshe Zofi, 2019. "Bi-criteria path problem with minimum length and maximum survival probability," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(2), pages 469-489, June.
    3. Helmut A. Sedding, 2020. "Scheduling jobs with a V-shaped time-dependent processing time," Journal of Scheduling, Springer, vol. 23(6), pages 751-768, December.
    4. Marieke Quant & Marc Meertens & Hans Reijnierse, 2008. "Processing games with shared interest," Annals of Operations Research, Springer, vol. 158(1), pages 219-228, February.
    5. José R. Correa & Maurice Queyranne, 2012. "Efficiency of equilibria in restricted uniform machine scheduling with total weighted completion time as social cost," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(5), pages 384-395, August.
    6. Ben Hermans & Roel Leus & Jannik Matuschke, 2022. "Exact and Approximation Algorithms for the Expanding Search Problem," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 281-296, January.
    7. Özen, Ulaş & Doğru, Mustafa K. & Armagan Tarim, S., 2012. "Static-dynamic uncertainty strategy for a single-item stochastic inventory control problem," Omega, Elsevier, vol. 40(3), pages 348-357.
    8. Qiuping Yu & Gad Allon & Achal Bassamboo & Seyed Iravani, 2018. "Managing Customer Expectations and Priorities in Service Systems," Management Science, INFORMS, vol. 64(8), pages 3942-3970, August.
    9. Lili Liu & Guochun Tang & Baoqiang Fan & Xingpeng Wang, 2015. "Two-person cooperative games on scheduling problems in outpatient pharmacy dispensing process," Journal of Combinatorial Optimization, Springer, vol. 30(4), pages 938-948, November.
    10. van Beek, Andries & Malmberg, Benjamin & Borm, Peter & Quant, Marieke & Schouten, Jop, 2021. "Cooperation and Competition in Linear Production and Sequencing Processes," Discussion Paper 2021-011, Tilburg University, Center for Economic Research.
    11. Gabriel Zayas‐Cabán & Emmett J. Lodree & David L. Kaufman, 2020. "Optimal Control of Parallel Queues for Managing Volunteer Convergence," Production and Operations Management, Production and Operations Management Society, vol. 29(10), pages 2268-2288, October.
    12. Kramer, Arthur & Dell’Amico, Mauro & Iori, Manuel, 2019. "Enhanced arc-flow formulations to minimize weighted completion time on identical parallel machines," European Journal of Operational Research, Elsevier, vol. 275(1), pages 67-79.
    13. Nicholas G. Hall & Marc E. Posner & Chris N. Potts, 2021. "Online production planning to maximize the number of on-time orders," Annals of Operations Research, Springer, vol. 298(1), pages 249-269, March.
    14. Bachtenkirch, David & Bock, Stefan, 2022. "Finding efficient make-to-order production and batch delivery schedules," European Journal of Operational Research, Elsevier, vol. 297(1), pages 133-152.
    15. Reijnierse, Hans & Borm, Peter & Quant, Marieke & Meertens, Marc, 2010. "Processing games with restricted capacities," European Journal of Operational Research, Elsevier, vol. 202(3), pages 773-780, May.
    16. Lee, Jisun & Joung, Seulgi & Lee, Kyungsik, 2022. "A fully polynomial time approximation scheme for the probability maximizing shortest path problem," European Journal of Operational Research, Elsevier, vol. 300(1), pages 35-45.
    17. Linwei Xin & David A. Goldberg, 2016. "Optimality Gap of Constant-Order Policies Decays Exponentially in the Lead Time for Lost Sales Models," Operations Research, INFORMS, vol. 64(6), pages 1556-1565, December.
    18. Xiangtong Qi, 2005. "A logistics scheduling model: Inventory cost reduction by batching," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(4), pages 312-320, June.
    19. Borm, Peter & Fiestras-Janeiro, Gloria & Hamers, Herbert & Sanchez, Estela & Voorneveld, Mark, 2002. "On the convexity of games corresponding to sequencing situations with due dates," European Journal of Operational Research, Elsevier, vol. 136(3), pages 616-634, February.
    20. Rubing Chen & Jinjiang Yuan, 2020. "Single-machine scheduling of proportional-linearly deteriorating jobs with positional due indices," 4OR, Springer, vol. 18(2), pages 177-196, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jsched:v:23:y:2020:i:6:d:10.1007_s10951-019-00616-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.