IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v53y2015i24p7252-7270.html
   My bibliography  Save this article

A stochastic model for operating room planning under capacity constraints

Author

Listed:
  • Aida Jebali
  • Ali Diabat

Abstract

The present paper describes a two-stage stochastic programme for operating room planning that takes into account capacity constraints of three hospital resources: operating rooms, beds in the intensive care unit (ICU) and beds in the ward (or medium care unit). Operating room planning consists of deciding on the elective surgeries to perform over each period of the planning horizon, while considering uncertainties related to surgery duration as well as patient length of stay in the ICU and the ward. Sample average approximation is then used to solve the planning problem, aiming to minimise the sum of patient-related costs and expected resource utilisation costs. Computational experiments are conducted to evaluate the performance of the proposed solution method. The obtained results highlight the robustness of operating room plans obtained by a stochastic approach, in comparison to those generated by a deterministic approach, and the importance of considering both ICU and ward beds in operating room planning.

Suggested Citation

  • Aida Jebali & Ali Diabat, 2015. "A stochastic model for operating room planning under capacity constraints," International Journal of Production Research, Taylor & Francis Journals, vol. 53(24), pages 7252-7270, December.
  • Handle: RePEc:taf:tprsxx:v:53:y:2015:i:24:p:7252-7270
    DOI: 10.1080/00207543.2015.1033500
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2015.1033500
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2015.1033500?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hans, Erwin & Wullink, Gerhard & van Houdenhoven, Mark & Kazemier, Geert, 2008. "Robust surgery loading," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1038-1050, March.
    2. Adan, Ivo & Bekkers, Jos & Dellaert, Nico & Jeunet, Jully & Vissers, Jan, 2011. "Improving operational effectiveness of tactical master plans for emergency and elective patients under stochastic demand and capacitated resources," European Journal of Operational Research, Elsevier, vol. 213(1), pages 290-308, August.
    3. Wang, Yu & Tang, Jiafu & Fung, Richard Y.K., 2014. "A column-generation-based heuristic algorithm for solving operating theater planning problem under stochastic demand and surgery cancellation risk," International Journal of Production Economics, Elsevier, vol. 158(C), pages 28-36.
    4. Lamiri, Mehdi & Xie, Xiaolan & Dolgui, Alexandre & Grimaud, Frederic, 2008. "A stochastic model for operating room planning with elective and emergency demand for surgery," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1026-1037, March.
    5. Sakine Batun & Brian T. Denton & Todd R. Huschka & Andrew J. Schaefer, 2011. "Operating Room Pooling and Parallel Surgery Processing Under Uncertainty," INFORMS Journal on Computing, INFORMS, vol. 23(2), pages 220-237, May.
    6. Guinet, Alain & Chaabane, Sondes, 2003. "Operating theatre planning," International Journal of Production Economics, Elsevier, vol. 85(1), pages 69-81, July.
    7. Lamiri, Mehdi & Grimaud, Frédéric & Xie, Xiaolan, 2009. "Optimization methods for a stochastic surgery planning problem," International Journal of Production Economics, Elsevier, vol. 120(2), pages 400-410, August.
    8. Min, Daiki & Yih, Yuehwern, 2010. "Scheduling elective surgery under uncertainty and downstream capacity constraints," European Journal of Operational Research, Elsevier, vol. 206(3), pages 642-652, November.
    9. Angela Testi & Elena Tanfani & Giancarlo Torre, 2007. "A three-phase approach for operating theatre schedules," Health Care Management Science, Springer, vol. 10(2), pages 163-172, June.
    10. Marcon, Eric & Kharraja, Said & Simonnet, Gerard, 2003. "The operating theatre planning by the follow-up of the risk of no realization," International Journal of Production Economics, Elsevier, vol. 85(1), pages 83-90, July.
    11. Cardoen, Brecht & Demeulemeester, Erik & Beliën, Jeroen, 2010. "Operating room planning and scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 201(3), pages 921-932, March.
    12. Jebali, AIda & Hadj Alouane, Atidel B. & Ladet, Pierre, 2006. "Operating rooms scheduling," International Journal of Production Economics, Elsevier, vol. 99(1-2), pages 52-62, February.
    13. Francesca Guerriero & Rosita Guido, 2011. "Operational research in the management of the operating theatre: a survey," Health Care Management Science, Springer, vol. 14(1), pages 89-114, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sean Harris & David Claudio, 2022. "Current Trends in Operating Room Scheduling 2015 to 2020: a Literature Review," SN Operations Research Forum, Springer, vol. 3(1), pages 1-42, March.
    2. Aisha Tayyab & Saif Ullah & Mohammed Fazle Baki, 2023. "An Outer Approximation Method for Scheduling Elective Surgeries with Sequence Dependent Setup Times to Multiple Operating Rooms," Mathematics, MDPI, vol. 11(11), pages 1-15, May.
    3. Hossein Hashemi Doulabi & Soheyl Khalilpourazari, 2023. "Stochastic weekly operating room planning with an exponential number of scenarios," Annals of Operations Research, Springer, vol. 328(1), pages 643-664, September.
    4. Zhang, Jian & Dridi, Mahjoub & El Moudni, Abdellah, 2020. "Column-generation-based heuristic approaches to stochastic surgery scheduling with downstream capacity constraints," International Journal of Production Economics, Elsevier, vol. 229(C).
    5. Arlen Dean & Amirhossein Meisami & Henry Lam & Mark P. Van Oyen & Christopher Stromblad & Nick Kastango, 2022. "Quantile regression forests for individualized surgery scheduling," Health Care Management Science, Springer, vol. 25(4), pages 682-709, December.
    6. Zhang, Jian & Dridi, Mahjoub & El Moudni, Abdellah, 2019. "A two-level optimization model for elective surgery scheduling with downstream capacity constraints," European Journal of Operational Research, Elsevier, vol. 276(2), pages 602-613.
    7. Shuwan Zhu & Wenjuan Fan & Shanlin Yang & Jun Pei & Panos M. Pardalos, 2019. "Operating room planning and surgical case scheduling: a review of literature," Journal of Combinatorial Optimization, Springer, vol. 37(3), pages 757-805, April.
    8. Shehadeh, Karmel S. & Padman, Rema, 2021. "A distributionally robust optimization approach for stochastic elective surgery scheduling with limited intensive care unit capacity," European Journal of Operational Research, Elsevier, vol. 290(3), pages 901-913.
    9. Vandenberghe, Mathieu & De Vuyst, Stijn & Aghezzaf, El-Houssaine & Bruneel, Herwig, 2019. "Surgery sequencing to minimize the expected maximum waiting time of emergent patients," European Journal of Operational Research, Elsevier, vol. 275(3), pages 971-982.
    10. Silva, Thiago A.O. & de Souza, Mauricio C., 2020. "Surgical scheduling under uncertainty by approximate dynamic programming," Omega, Elsevier, vol. 95(C).
    11. Santos, Daniel & Marques, Inês, 2022. "Designing master surgery schedules with downstream unit integration via stochastic programming," European Journal of Operational Research, Elsevier, vol. 299(3), pages 834-852.
    12. Jose M. Molina-Pariente & Erwin W. Hans & Jose M. Framinan, 2018. "A stochastic approach for solving the operating room scheduling problem," Flexible Services and Manufacturing Journal, Springer, vol. 30(1), pages 224-251, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Samudra & Carla Van Riet & Erik Demeulemeester & Brecht Cardoen & Nancy Vansteenkiste & Frank E. Rademakers, 2016. "Scheduling operating rooms: achievements, challenges and pitfalls," Journal of Scheduling, Springer, vol. 19(5), pages 493-525, October.
    2. Jose M. Molina-Pariente & Erwin W. Hans & Jose M. Framinan, 2018. "A stochastic approach for solving the operating room scheduling problem," Flexible Services and Manufacturing Journal, Springer, vol. 30(1), pages 224-251, June.
    3. Shuwan Zhu & Wenjuan Fan & Shanlin Yang & Jun Pei & Panos M. Pardalos, 2019. "Operating room planning and surgical case scheduling: a review of literature," Journal of Combinatorial Optimization, Springer, vol. 37(3), pages 757-805, April.
    4. Francesca Guerriero & Rosita Guido, 2011. "Operational research in the management of the operating theatre: a survey," Health Care Management Science, Springer, vol. 14(1), pages 89-114, March.
    5. Gartner, Daniel & Kolisch, Rainer, 2014. "Scheduling the hospital-wide flow of elective patients," European Journal of Operational Research, Elsevier, vol. 233(3), pages 689-699.
    6. Eun, Joonyup & Kim, Sang-Phil & Yih, Yuehwern & Tiwari, Vikram, 2019. "Scheduling elective surgery patients considering time-dependent health urgency: Modeling and solution approaches," Omega, Elsevier, vol. 86(C), pages 137-153.
    7. Zhang, Yu & Wang, Yu & Tang, Jiafu & Lim, Andrew, 2020. "Mitigating overtime risk in tactical surgical scheduling," Omega, Elsevier, vol. 93(C).
    8. Michael Samudra & Erik Demeulemeester & Brecht Cardoen & Nancy Vansteenkiste & Frank E. Rademakers, 2017. "Due time driven surgery scheduling," Health Care Management Science, Springer, vol. 20(3), pages 326-352, September.
    9. Silva, Thiago A.O. & de Souza, Mauricio C. & Saldanha, Rodney R. & Burke, Edmund K., 2015. "Surgical scheduling with simultaneous employment of specialised human resources," European Journal of Operational Research, Elsevier, vol. 245(3), pages 719-730.
    10. Zhang, Jian & Dridi, Mahjoub & El Moudni, Abdellah, 2019. "A two-level optimization model for elective surgery scheduling with downstream capacity constraints," European Journal of Operational Research, Elsevier, vol. 276(2), pages 602-613.
    11. Freeman, Nickolas & Zhao, Ming & Melouk, Sharif, 2018. "An iterative approach for case mix planning under uncertainty," Omega, Elsevier, vol. 76(C), pages 160-173.
    12. repec:ipg:wpaper:2013-014 is not listed on IDEAS
    13. Cappanera, Paola & Visintin, Filippo & Banditori, Carlo, 2014. "Comparing resource balancing criteria in master surgical scheduling: A combined optimisation-simulation approach," International Journal of Production Economics, Elsevier, vol. 158(C), pages 179-196.
    14. Duma, Davide & Aringhieri, Roberto, 2019. "The management of non-elective patients: shared vs. dedicated policies," Omega, Elsevier, vol. 83(C), pages 199-212.
    15. Cardoen, Brecht & Demeulemeester, Erik & Beliën, Jeroen, 2010. "Operating room planning and scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 201(3), pages 921-932, March.
    16. Silva, Thiago A.O. & de Souza, Mauricio C., 2020. "Surgical scheduling under uncertainty by approximate dynamic programming," Omega, Elsevier, vol. 95(C).
    17. Mengyu Guo & Su Wu & Binfeng Li & Jie Song & Youping Rong, 2016. "Integrated scheduling of elective surgeries and surgical nurses for operating room suites," Flexible Services and Manufacturing Journal, Springer, vol. 28(1), pages 166-181, June.
    18. repec:ipg:wpaper:201414 is not listed on IDEAS
    19. Hejer Khlif Hachicha & Farah Zeghal Mansour, 2018. "Two-MILP models for scheduling elective surgeries within a private healthcare facility," Health Care Management Science, Springer, vol. 21(3), pages 376-392, September.
    20. Koppka, Lisa & Wiesche, Lara & Schacht, Matthias & Werners, Brigitte, 2018. "Optimal distribution of operating hours over operating rooms using probabilities," European Journal of Operational Research, Elsevier, vol. 267(3), pages 1156-1171.
    21. Hossein Hashemi Doulabi & Soheyl Khalilpourazari, 2023. "Stochastic weekly operating room planning with an exponential number of scenarios," Annals of Operations Research, Springer, vol. 328(1), pages 643-664, September.
    22. Serhat Gul & Brian T. Denton & John W. Fowler, 2015. "A Progressive Hedging Approach for Surgery Planning Under Uncertainty," INFORMS Journal on Computing, INFORMS, vol. 27(4), pages 755-772, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:53:y:2015:i:24:p:7252-7270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.