IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v271y2018i2p420-435.html
   My bibliography  Save this article

Robust allocation of operating rooms: A cutting plane approach to handle lognormal case durations

Author

Listed:
  • Sagnol, Guillaume
  • Barner, Christoph
  • Borndörfer, Ralf
  • Grima, Mickaël
  • Seeling, Matthes
  • Spies, Claudia
  • Wernecke, Klaus

Abstract

The problem of allocating operating rooms (OR) to surgical cases is a challenging task, involving both combinatorial aspects and uncertainty handling. We formulate this problem as a parallel machines scheduling problem, in which job durations follow a lognormal distribution, and a fixed assignment of jobs to machines must be computed. We propose a cutting-plane approach to solve the robust counterpart of this optimization problem. To this end, we develop an algorithm based on fixed-point iterations that identifies worst-case scenarios and generates cut inequalities. The main result of this article uses Hilbert’s projective geometry to prove the convergence of this procedure under mild conditions. We also propose two exact solution methods for a similar problem, but with a polyhedral uncertainty set, for which only approximation approaches were known. Our model can be extended to balance the load over several planning periods in a rolling horizon. We present extensive numerical experiments for instances based on real data from a major hospital in Berlin. In particular, we find that: (i) our approach performs well compared to a previous model that ignored the distribution of case durations; (ii) compared to an alternative stochastic programming approach, robust optimization yields solutions that are more robust against uncertainty, at a small price in terms of average cost; (iii) the longest expected processing time first (LEPT) heuristic performs well and efficiently protects against extreme scenarios, but only if a good prediction model for the durations is available. Finally, we draw a number of managerial implications from these observations.

Suggested Citation

  • Sagnol, Guillaume & Barner, Christoph & Borndörfer, Ralf & Grima, Mickaël & Seeling, Matthes & Spies, Claudia & Wernecke, Klaus, 2018. "Robust allocation of operating rooms: A cutting plane approach to handle lognormal case durations," European Journal of Operational Research, Elsevier, vol. 271(2), pages 420-435.
  • Handle: RePEc:eee:ejores:v:271:y:2018:i:2:p:420-435
    DOI: 10.1016/j.ejor.2018.05.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037722171830420X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2018.05.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bjorn P. Berg & Brian T. Denton, 2017. "Fast Approximation Methods for Online Scheduling of Outpatient Procedure Centers," INFORMS Journal on Computing, INFORMS, vol. 29(4), pages 631-644, November.
    2. Andreas Fügener & Sebastian Schiffels & Rainer Kolisch, 2017. "Overutilization and underutilization of operating rooms - insights from behavioral health care operations management," Health Care Management Science, Springer, vol. 20(1), pages 115-128, March.
    3. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    4. Pham, Dinh-Nguyen & Klinkert, Andreas, 2008. "Surgical case scheduling as a generalized job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1011-1025, March.
    5. Brian T. Denton & Andrew J. Miller & Hari J. Balasubramanian & Todd R. Huschka, 2010. "Optimal Allocation of Surgery Blocks to Operating Rooms Under Uncertainty," Operations Research, INFORMS, vol. 58(4-part-1), pages 802-816, August.
    6. George B. Dantzig, 1957. "Discrete-Variable Extremum Problems," Operations Research, INFORMS, vol. 5(2), pages 266-288, April.
    7. Hans, Erwin & Wullink, Gerhard & van Houdenhoven, Mark & Kazemier, Geert, 2008. "Robust surgery loading," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1038-1050, March.
    8. Ludo van der Heyden, 1981. "Scheduling Jobs with Exponential Processing and Arrival Times on Identical Processors so as to Minimize the Expected Makespan," Mathematics of Operations Research, INFORMS, vol. 6(2), pages 305-312, May.
    9. Brian Denton & James Viapiano & Andrea Vogl, 2007. "Optimization of surgery sequencing and scheduling decisions under uncertainty," Health Care Management Science, Springer, vol. 10(1), pages 13-24, February.
    10. Sakine Batun & Brian T. Denton & Todd R. Huschka & Andrew J. Schaefer, 2011. "Operating Room Pooling and Parallel Surgery Processing Under Uncertainty," INFORMS Journal on Computing, INFORMS, vol. 23(2), pages 220-237, May.
    11. A. Ben-Tal & A. Nemirovski, 1998. "Robust Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 23(4), pages 769-805, November.
    12. Stepaniak, P.S. & Heij, C. & de Vries, G., 2009. "Modeling and prediction of surgical procedure times," Econometric Institute Research Papers EI 2009-26, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    13. Birge, John R. & Louveaux, Francois V., 1988. "A multicut algorithm for two-stage stochastic linear programs," European Journal of Operational Research, Elsevier, vol. 34(3), pages 384-392, March.
    14. Francesca Guerriero & Rosita Guido, 2011. "Operational research in the management of the operating theatre: a survey," Health Care Management Science, Springer, vol. 14(1), pages 89-114, March.
    15. Fanwen Meng & Jin Qi & Meilin Zhang & James Ang & Singfat Chu & Melvyn Sim, 2015. "A Robust Optimization Model for Managing Elective Admission in a Public Hospital," Operations Research, INFORMS, vol. 63(6), pages 1452-1467, December.
    16. Pieter S. Stepaniak & Christiaan Heij & Guus De Vries, 2010. "Modeling and prediction of surgical procedure times," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 64(1), pages 1-18, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sean Harris & David Claudio, 2022. "Current Trends in Operating Room Scheduling 2015 to 2020: a Literature Review," SN Operations Research Forum, Springer, vol. 3(1), pages 1-42, March.
    2. Ankit Bansal & Jean-Philippe Richard & Bjorn P. Berg & Yu-Li Huang, 2024. "A Sequential Follower Refinement Algorithm for Robust Surgery Scheduling," INFORMS Journal on Computing, INFORMS, vol. 36(3), pages 918-937, May.
    3. Lamas, Patricio & Goycoolea, Marcos & Pagnoncelli, Bernardo & Newman, Alexandra, 2024. "A target-time-windows technique for project scheduling under uncertainty," European Journal of Operational Research, Elsevier, vol. 314(2), pages 792-806.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuwan Zhu & Wenjuan Fan & Shanlin Yang & Jun Pei & Panos M. Pardalos, 2019. "Operating room planning and surgical case scheduling: a review of literature," Journal of Combinatorial Optimization, Springer, vol. 37(3), pages 757-805, April.
    2. Michael Samudra & Carla Van Riet & Erik Demeulemeester & Brecht Cardoen & Nancy Vansteenkiste & Frank E. Rademakers, 2016. "Scheduling operating rooms: achievements, challenges and pitfalls," Journal of Scheduling, Springer, vol. 19(5), pages 493-525, October.
    3. Wang, Yu & Zhang, Yu & Tang, Jiafu, 2019. "A distributionally robust optimization approach for surgery block allocation," European Journal of Operational Research, Elsevier, vol. 273(2), pages 740-753.
    4. Bernardetta Addis & Giuliana Carello & Andrea Grosso & Elena Tànfani, 2016. "Operating room scheduling and rescheduling: a rolling horizon approach," Flexible Services and Manufacturing Journal, Springer, vol. 28(1), pages 206-232, June.
    5. Aisha Tayyab & Saif Ullah & Mohammed Fazle Baki, 2023. "An Outer Approximation Method for Scheduling Elective Surgeries with Sequence Dependent Setup Times to Multiple Operating Rooms," Mathematics, MDPI, vol. 11(11), pages 1-15, May.
    6. Gartner, Daniel & Kolisch, Rainer, 2014. "Scheduling the hospital-wide flow of elective patients," European Journal of Operational Research, Elsevier, vol. 233(3), pages 689-699.
    7. Duma, Davide & Aringhieri, Roberto, 2019. "The management of non-elective patients: shared vs. dedicated policies," Omega, Elsevier, vol. 83(C), pages 199-212.
    8. Azar, Macarena & Carrasco, Rodrigo A. & Mondschein, Susana, 2022. "Dealing with uncertain surgery times in operating room scheduling," European Journal of Operational Research, Elsevier, vol. 299(1), pages 377-394.
    9. Silva, Thiago A.O. & de Souza, Mauricio C., 2020. "Surgical scheduling under uncertainty by approximate dynamic programming," Omega, Elsevier, vol. 95(C).
    10. Francesca Guerriero & Rosita Guido, 2011. "Operational research in the management of the operating theatre: a survey," Health Care Management Science, Springer, vol. 14(1), pages 89-114, March.
    11. Wang, Yu & Zhang, Yu & Tang, Jiafu, 2024. "Wasserstein distributionally robust surgery scheduling with elective and emergency patients," European Journal of Operational Research, Elsevier, vol. 314(2), pages 509-522.
    12. Marques, Inês & Captivo, M. Eugénia, 2017. "Different stakeholders’ perspectives for a surgical case assignment problem: Deterministic and robust approaches," European Journal of Operational Research, Elsevier, vol. 261(1), pages 260-278.
    13. Sandeep Rath & Kumar Rajaram & Aman Mahajan, 2017. "Integrated Anesthesiologist and Room Scheduling for Surgeries: Methodology and Application," Operations Research, INFORMS, vol. 65(6), pages 1460-1478, December.
    14. Gréanne Leeftink & Erwin W. Hans, 2018. "Case mix classification and a benchmark set for surgery scheduling," Journal of Scheduling, Springer, vol. 21(1), pages 17-33, February.
    15. Zhang, Yu & Wang, Yu & Tang, Jiafu & Lim, Andrew, 2020. "Mitigating overtime risk in tactical surgical scheduling," Omega, Elsevier, vol. 93(C).
    16. Cappanera, Paola & Visintin, Filippo & Banditori, Carlo, 2014. "Comparing resource balancing criteria in master surgical scheduling: A combined optimisation-simulation approach," International Journal of Production Economics, Elsevier, vol. 158(C), pages 179-196.
    17. Mengyu Guo & Su Wu & Binfeng Li & Jie Song & Youping Rong, 2016. "Integrated scheduling of elective surgeries and surgical nurses for operating room suites," Flexible Services and Manufacturing Journal, Springer, vol. 28(1), pages 166-181, June.
    18. Yuan Gao & Qian Zhang & Chun Kit Lau & Bhagwat Ram, 2022. "Robust Appointment Scheduling in Healthcare," Mathematics, MDPI, vol. 10(22), pages 1-15, November.
    19. Roshanaei, Vahid & Luong, Curtiss & Aleman, Dionne M. & Urbach, David R., 2020. "Reformulation, linearization, and decomposition techniques for balanced distributed operating room scheduling," Omega, Elsevier, vol. 93(C).
    20. Arezoo Atighehchian & Mohammad Mehdi Sepehri & Pejman Shadpour & Kamran Kianfar, 2020. "A two-step stochastic approach for operating rooms scheduling in multi-resource environment," Annals of Operations Research, Springer, vol. 292(1), pages 191-214, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:271:y:2018:i:2:p:420-435. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.