IDEAS home Printed from https://ideas.repec.org/a/spr/jsched/v20y2017i5d10.1007_s10951-017-0517-1.html
   My bibliography  Save this article

Scheduling cleaning activities on trains by minimizing idle times

Author

Listed:
  • Enrico Bartolini

    (RWTH Aachen University)

  • Mauro Dell’Amico

    (University of Modena and Reggio Emilia)

  • Manuel Iori

    (University of Modena and Reggio Emilia)

Abstract

We consider a workforce scheduling problem which consists of determining optimal working shifts for cleaning personnel at a rail station. Trains arrive and depart according to a specified schedule and require a given amount of cleaning time from the personnel before their departure from the station. Working shifts must specify a sequence of trains to be cleaned by a worker together with corresponding cleaning times and are subject to contract regulations which impose both a minimum and a maximum duration of the shift. We model the problem as a mixed-integer program with a pseudo-polynomial number of variables and propose an exponentially sized reformulation obtained through Dantzig–Wolfe reformulation. The reformulation is strengthened by valid inequalities and used to compute lower bounds on the optimal cost. A heuristic algorithm based on column generation and variable fixing is then proposed and computationally evaluated on both a set of instances derived from real data and a larger set of randomly generated ones. The reported computational results show that the algorithm provides solutions very close to the optimal ones within 1 h of computing time.

Suggested Citation

  • Enrico Bartolini & Mauro Dell’Amico & Manuel Iori, 2017. "Scheduling cleaning activities on trains by minimizing idle times," Journal of Scheduling, Springer, vol. 20(5), pages 493-506, October.
  • Handle: RePEc:spr:jsched:v:20:y:2017:i:5:d:10.1007_s10951-017-0517-1
    DOI: 10.1007/s10951-017-0517-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10951-017-0517-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10951-017-0517-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paolo Serafini, 1996. "Scheduling Jobs on Several Machines with the Job Splitting Property," Operations Research, INFORMS, vol. 44(4), pages 617-628, August.
    2. A Lim & B Rodrigues & L Song, 2004. "Manpower allocation with time windows," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(11), pages 1178-1186, November.
    3. Christian Tilk & Stefan Irnich, 2014. "Dynamic Programming for the Minimum Tour Duration Problem," Working Papers 1408, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz, revised 04 Aug 2014.
    4. George B. Dantzig & Philip Wolfe, 1960. "Decomposition Principle for Linear Programs," Operations Research, INFORMS, vol. 8(1), pages 101-111, February.
    5. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    6. Guy Desaulniers, 2010. "Branch-and-Price-and-Cut for the Split-Delivery Vehicle Routing Problem with Time Windows," Operations Research, INFORMS, vol. 58(1), pages 179-192, February.
    7. Roberto Roberti & Enrico Bartolini & Aristide Mingozzi, 2015. "The Fixed Charge Transportation Problem: An Exact Algorithm Based on a New Integer Programming Formulation," Management Science, INFORMS, vol. 61(6), pages 1275-1291, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jie, Wanchen & Yang, Jun & Zhang, Min & Huang, Yongxi, 2019. "The two-echelon capacitated electric vehicle routing problem with battery swapping stations: Formulation and efficient methodology," European Journal of Operational Research, Elsevier, vol. 272(3), pages 879-904.
    2. Michael Drexl, 2012. "Synchronization in Vehicle Routing---A Survey of VRPs with Multiple Synchronization Constraints," Transportation Science, INFORMS, vol. 46(3), pages 297-316, August.
    3. Zu-Jun Ma & Fei Yang & Ying Dai & Zuo-Jun Max Shen, 2021. "The Migratory Beekeeping Routing Problem: Model and an Exact Algorithm," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 319-335, January.
    4. Xue, Li & Luo, Zhixing & Lim, Andrew, 2016. "Exact approaches for the pickup and delivery problem with loading cost," Omega, Elsevier, vol. 59(PB), pages 131-145.
    5. Gendreau, Michel & Manerba, Daniele & Mansini, Renata, 2016. "The multi-vehicle traveling purchaser problem with pairwise incompatibility constraints and unitary demands: A branch-and-price approach," European Journal of Operational Research, Elsevier, vol. 248(1), pages 59-71.
    6. Salani, Matteo & Vacca, Ilaria, 2011. "Branch and price for the vehicle routing problem with discrete split deliveries and time windows," European Journal of Operational Research, Elsevier, vol. 213(3), pages 470-477, September.
    7. Zhixing Luo & Hu Qin & Wenbin Zhu & Andrew Lim, 2017. "Branch and Price and Cut for the Split-Delivery Vehicle Routing Problem with Time Windows and Linear Weight-Related Cost," Transportation Science, INFORMS, vol. 51(2), pages 668-687, May.
    8. C. Archetti & M. Bouchard & G. Desaulniers, 2011. "Enhanced Branch and Price and Cut for Vehicle Routing with Split Deliveries and Time Windows," Transportation Science, INFORMS, vol. 45(3), pages 285-298, August.
    9. A. Ruszczynski, 1993. "Regularized Decomposition of Stochastic Programs: Algorithmic Techniques and Numerical Results," Working Papers wp93021, International Institute for Applied Systems Analysis.
    10. Ethem Çanakoğlu & İbrahim Muter & Tevfik Aytekin, 2021. "Integrating Individual and Aggregate Diversity in Top- N Recommendation," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 300-318, January.
    11. Ogbe, Emmanuel & Li, Xiang, 2017. "A new cross decomposition method for stochastic mixed-integer linear programming," European Journal of Operational Research, Elsevier, vol. 256(2), pages 487-499.
    12. Sankaran, Jayaram K., 1995. "Column generation applied to linear programs in course registration," European Journal of Operational Research, Elsevier, vol. 87(2), pages 328-342, December.
    13. Metrane, Abdelmoutalib & Soumis, François & Elhallaoui, Issmail, 2010. "Column generation decomposition with the degenerate constraints in the subproblem," European Journal of Operational Research, Elsevier, vol. 207(1), pages 37-44, November.
    14. Belanger, Nicolas & Desaulniers, Guy & Soumis, Francois & Desrosiers, Jacques, 2006. "Periodic airline fleet assignment with time windows, spacing constraints, and time dependent revenues," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1754-1766, December.
    15. François Clautiaux & Cláudio Alves & José Valério de Carvalho & Jürgen Rietz, 2011. "New Stabilization Procedures for the Cutting Stock Problem," INFORMS Journal on Computing, INFORMS, vol. 23(4), pages 530-545, November.
    16. Omid Shahvari & Rasaratnam Logendran & Madjid Tavana, 2022. "An efficient model-based branch-and-price algorithm for unrelated-parallel machine batching and scheduling problems," Journal of Scheduling, Springer, vol. 25(5), pages 589-621, October.
    17. Thomas W. M. Vossen & Dan Zhang, 2015. "Reductions of Approximate Linear Programs for Network Revenue Management," Operations Research, INFORMS, vol. 63(6), pages 1352-1371, December.
    18. Ternoy, Jacques Emmanuel, 1969. "Cooperation and economic efficiency," ISU General Staff Papers 196901010800004786, Iowa State University, Department of Economics.
    19. Ann-Kathrin Rothenbächer & Michael Drexl & Stefan Irnich, 2018. "Branch-and-Price-and-Cut for the Truck-and-Trailer Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 52(5), pages 1174-1190, October.
    20. Ibrahim Muter & Tevfik Aytekin, 2017. "Incorporating Aggregate Diversity in Recommender Systems Using Scalable Optimization Approaches," INFORMS Journal on Computing, INFORMS, vol. 29(3), pages 405-421, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jsched:v:20:y:2017:i:5:d:10.1007_s10951-017-0517-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.