IDEAS home Printed from https://ideas.repec.org/a/spr/jqecon/v20y2022i2d10.1007_s40953-022-00289-9.html
   My bibliography  Save this article

Regression Analysis Using Asymmetric Losses: A Bayesian Approach

Author

Listed:
  • Georgios Tsiotas

    (University of Crete)

Abstract

Symmetric loss functions are sometimes inappropriate in Economics prediction problems. Asymmetric loss functions can then be applied where errors of the same magnitude but with a different sign can reflect different loss levels. We develop a Bayesian framework that estimates regression models which incorporate asymmetric loss functions such as the linex loss. Given that the likelihood function is not of a known form, estimation is implemented using a Laplace-type estimator within a Markov Chain Monte Carlo framework. We illustrate this method using simulated and real estate data series. The results demonstrate significant findings with regard to the prediction of linear models that use the linex loss function.

Suggested Citation

  • Georgios Tsiotas, 2022. "Regression Analysis Using Asymmetric Losses: A Bayesian Approach," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 20(2), pages 311-327, June.
  • Handle: RePEc:spr:jqecon:v:20:y:2022:i:2:d:10.1007_s40953-022-00289-9
    DOI: 10.1007/s40953-022-00289-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40953-022-00289-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40953-022-00289-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:hal:spmain:info:hdl:2441/78hlmdbud88hhp5vbdddivv2hu is not listed on IDEAS
    2. Forneron, Jean-Jacques & Ng, Serena, 2018. "The ABC of simulation estimation with auxiliary statistics," Journal of Econometrics, Elsevier, vol. 205(1), pages 112-139.
    3. Christoffersen, Peter F. & Diebold, Francis X., 1997. "Optimal Prediction Under Asymmetric Loss," Econometric Theory, Cambridge University Press, vol. 13(6), pages 808-817, December.
    4. Jeremy Lise & Costas Meghir & Jean-Marc Robin, 2016. "Matching, Sorting and Wages," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 19, pages 63-87, January.
    5. Christoffersen, Peter F & Diebold, Francis X, 1996. "Further Results on Forecasting and Model Selection under Asymmetric Loss," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(5), pages 561-571, Sept.-Oct.
    6. Clive W.J. Granger, 1999. "Outline of forecast theory using generalized cost functions," Spanish Economic Review, Springer;Spanish Economic Association, vol. 1(2), pages 161-173.
    7. Chernozhukov, Victor & Hong, Han, 2003. "An MCMC approach to classical estimation," Journal of Econometrics, Elsevier, vol. 115(2), pages 293-346, August.
    8. Michael Cain & Christian Janssen, 1995. "Real estate price prediction under asymmetric loss," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 47(3), pages 401-414, September.
    9. Philip Heidelberger & Peter D. Welch, 1983. "Simulation Run Length Control in the Presence of an Initial Transient," Operations Research, INFORMS, vol. 31(6), pages 1109-1144, December.
    10. Adelchi Azzalini & Antonella Capitanio, 2003. "Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 367-389, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Clements, Michael P. & Franses, Philip Hans & Swanson, Norman R., 2004. "Forecasting economic and financial time-series with non-linear models," International Journal of Forecasting, Elsevier, vol. 20(2), pages 169-183.
    2. Valentina Corradi & Norman Swanson, 2004. "Bootstrap Procedures for Recursive Estimation Schemes With Applications to Forecast Model Selection," Departmental Working Papers 200418, Rutgers University, Department of Economics.
    3. Siddhartha S. Bora & Ani L. Katchova & Todd H. Kuethe, 2021. "The Rationality of USDA Forecasts under Multivariate Asymmetric Loss," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(3), pages 1006-1033, May.
    4. Demetrescu, Matei, 2006. "An extension of the Gauss-Newton algorithm for estimation under asymmetric loss," Computational Statistics & Data Analysis, Elsevier, vol. 50(2), pages 379-401, January.
    5. Valentina Corradi & Norman Swanson, 2003. "The Block Bootstrap for Parameter Estimation Error In Recursive Estimation Schemes, With Applications to Predictive Evaluation," Departmental Working Papers 200313, Rutgers University, Department of Economics.
    6. Patton, Andrew J. & Timmermann, Allan, 2007. "Properties of optimal forecasts under asymmetric loss and nonlinearity," Journal of Econometrics, Elsevier, vol. 140(2), pages 884-918, October.
    7. Bruzda, Joanna, 2019. "Quantile smoothing in supply chain and logistics forecasting," International Journal of Production Economics, Elsevier, vol. 208(C), pages 122-139.
    8. Corradi, Valentina & Swanson, Norman R., 2002. "A consistent test for nonlinear out of sample predictive accuracy," Journal of Econometrics, Elsevier, vol. 110(2), pages 353-381, October.
    9. Matei Demetrescu, 2007. "Optimal forecast intervals under asymmetric loss," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(4), pages 227-238.
    10. Alp, Tansel & Demetrescu, Matei, 2010. "Joint forecasts of Dow Jones stocks under general multivariate loss function," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2360-2371, November.
    11. Marcella Niglio, 2007. "Multi-step forecasts from threshold ARMA models using asymmetric loss functions," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 16(3), pages 395-410, November.
    12. Boese-Schlosser, Vanessa A. & Eberhardt, Markus, 2024. "Democracy Doesn’t Always Happen Over Night: Regime Change in Stages and Economic Growth," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, issue Forthcomi, pages 1-29.
    13. Casini, Alessandro & Perron, Pierre, 2021. "Continuous record Laplace-based inference about the break date in structural change models," Journal of Econometrics, Elsevier, vol. 224(1), pages 3-21.
    14. Mike G. Tsionas, 2023. "Linex and double-linex regression for parameter estimation and forecasting," Annals of Operations Research, Springer, vol. 323(1), pages 229-245, April.
    15. Anatolyev, Stanislav, 2009. "Dynamic modeling under linear-exponential loss," Economic Modelling, Elsevier, vol. 26(1), pages 82-89, January.
    16. Peter Christoffersen & Francis X. Diebold, 2002. "Financial Asset Returns, Market Timing, and Volatility Dynamics," CIRANO Working Papers 2002s-02, CIRANO.
    17. Sebastian Heise & Tommaso Porzio, 2019. "Spatial Wage Gaps and Frictional Labor Markets," Staff Reports 898, Federal Reserve Bank of New York.
    18. Timmermann, Allan & Patton, Andrew, 2003. "Properties of Optimal Forecasts," CEPR Discussion Papers 4037, C.E.P.R. Discussion Papers.
    19. Nezih Guner & Alessandro Ruggieri, 2021. "Misallocation and inequality," Discussion Papers 2021/01, University of Nottingham, Centre for Finance, Credit and Macroeconomics (CFCM).
    20. Christoffersen, Peter F. & Diebold, Francis X., 1997. "Optimal Prediction Under Asymmetric Loss," Econometric Theory, Cambridge University Press, vol. 13(6), pages 808-817, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jqecon:v:20:y:2022:i:2:d:10.1007_s40953-022-00289-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.