IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v16y2007i3p395-410.html
   My bibliography  Save this article

Multi-step forecasts from threshold ARMA models using asymmetric loss functions

Author

Listed:
  • Marcella Niglio

Abstract

No abstract is available for this item.

Suggested Citation

  • Marcella Niglio, 2007. "Multi-step forecasts from threshold ARMA models using asymmetric loss functions," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 16(3), pages 395-410, November.
  • Handle: RePEc:spr:stmapp:v:16:y:2007:i:3:p:395-410
    DOI: 10.1007/s10260-007-0044-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10260-007-0044-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10260-007-0044-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christoffersen, Peter F & Diebold, Francis X, 1996. "Further Results on Forecasting and Model Selection under Asymmetric Loss," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(5), pages 561-571, Sept.-Oct.
    2. Soosung Hwang & John Knight & Stephen E. Satchell, 2001. "Forecasting Nonlinear Functions of Returns Using LINEX Loss Functions," Annals of Economics and Finance, Society for AEF, vol. 2(1), pages 187-213, May.
    3. Polonik, Wolfgang & Yao, Qiwei, 2000. "Conditional minimum volume predictive regions for stochastic processes," LSE Research Online Documents on Economics 6311, London School of Economics and Political Science, LSE Library.
    4. Graham Elliott & Allan Timmermann & Ivana Komunjer, 2005. "Estimation and Testing of Forecast Rationality under Flexible Loss," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(4), pages 1107-1125.
    5. Christoffersen, Peter F. & Diebold, Francis X., 1997. "Optimal Prediction Under Asymmetric Loss," Econometric Theory, Cambridge University Press, vol. 13(6), pages 808-817, December.
    6. Christodoulakis, George A., 2005. "Financial forecasts in the presence of asymmetric loss aversion, skewness and excess kurtosis," Finance Research Letters, Elsevier, vol. 2(4), pages 227-233, December.
    7. Amendola, Alessandra & Niglio, Marcella & Vitale, Cosimo, 2006. "The moments of SETARMA models," Statistics & Probability Letters, Elsevier, vol. 76(6), pages 625-633, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anatolyev, Stanislav, 2009. "Dynamic modeling under linear-exponential loss," Economic Modelling, Elsevier, vol. 26(1), pages 82-89, January.
    2. Patton, Andrew J. & Timmermann, Allan, 2007. "Properties of optimal forecasts under asymmetric loss and nonlinearity," Journal of Econometrics, Elsevier, vol. 140(2), pages 884-918, October.
    3. Emilio Zanetti Chini, 2018. "Forecasters’ utility and forecast coherence," CREATES Research Papers 2018-23, Department of Economics and Business Economics, Aarhus University.
    4. Mike G. Tsionas, 2023. "Linex and double-linex regression for parameter estimation and forecasting," Annals of Operations Research, Springer, vol. 323(1), pages 229-245, April.
    5. Matteo Iacopini & Francesco Ravazzolo & Luca Rossini, 2020. "Proper scoring rules for evaluating asymmetry in density forecasting," Papers 2006.11265, arXiv.org, revised Sep 2020.
    6. Behrens, Christoph & Pierdzioch, Christian & Risse, Marian, 2018. "Testing the optimality of inflation forecasts under flexible loss with random forests," Economic Modelling, Elsevier, vol. 72(C), pages 270-277.
    7. Christoph Behrens, 2019. "A Nonparametric Evaluation of the Optimality of German Export and Import Growth Forecasts under Flexible Loss," Economies, MDPI, vol. 7(3), pages 1-23, September.
    8. Pierdzioch, Christian & Risse, Marian & Rohloff, Sebastian, 2014. "The international business cycle and gold-price fluctuations," The Quarterly Review of Economics and Finance, Elsevier, vol. 54(2), pages 292-305.
    9. Carlos Capistr¡N & Allan Timmermann, 2009. "Disagreement and Biases in Inflation Expectations," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(2-3), pages 365-396, March.
    10. Hitesh Doshi & Kris Jacobs & Rui Liu, 2021. "Information in the Term Structure: A Forecasting Perspective," Management Science, INFORMS, vol. 67(8), pages 5255-5277, August.
    11. Brownlees, Christian T. & Gallo, Giampiero M., 2011. "Shrinkage estimation of semiparametric multiplicative error models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 365-378.
    12. Gneiting, Tilmann, 2011. "Quantiles as optimal point forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 197-207, April.
    13. Siddhartha S. Bora & Ani L. Katchova & Todd H. Kuethe, 2021. "The Rationality of USDA Forecasts under Multivariate Asymmetric Loss," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(3), pages 1006-1033, May.
    14. Carlos Capistrán & Allan Timmermann, 2009. "Disagreement and Biases in Inflation Expectations," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(2‐3), pages 365-396, March.
    15. E. Mamatzakis, 2014. "Revealing asymmetries in the loss function of WTI oil futures market," Empirical Economics, Springer, vol. 47(2), pages 411-426, September.
    16. Philip Hans Franses & Rianne Legerstee & Richard Paap, 2017. "Estimating loss functions of experts," Applied Economics, Taylor & Francis Journals, vol. 49(4), pages 386-396, January.
    17. Ulu, Yasemin, 2013. "Multivariate test for forecast rationality under asymmetric loss functions: Recent evidence from MMS survey of inflation–output forecasts," Economics Letters, Elsevier, vol. 119(2), pages 168-171.
    18. Gneiting, Tilmann, 2011. "Quantiles as optimal point forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 197-207.
    19. Chan, Kam C. & Chan, Leo H. & Nguyen, Chi M., 2020. "Forecasting oil futures market volatility in a financialized world: Why speculative activities matter," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    20. Ulu, Yasemin, 2007. "Optimal prediction under LINLIN loss: Empirical evidence," International Journal of Forecasting, Elsevier, vol. 23(4), pages 707-715.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:16:y:2007:i:3:p:395-410. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.