IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v35y2022i2d10.1007_s10959-021-01094-5.html
   My bibliography  Save this article

Non-integrable Stable Approximation by Stein’s Method

Author

Listed:
  • Peng Chen

    (University of Macau)

  • Ivan Nourdin

    (Université du Luxembourg)

  • Lihu Xu

    (University of Macau)

  • Xiaochuan Yang

    (Université du Luxembourg
    National University of Singapore)

  • Rui Zhang

    (Capital Normal University)

Abstract

We develop Stein’s method for $$\alpha $$ α -stable approximation with $$\alpha \in (0,1]$$ α ∈ ( 0 , 1 ] , continuing the recent line of research by Xu (Ann Appl Probab 29(1):458–504, 2019) and Chen et al. (J Theor Probab, 2018. https://doi.org/10.1007/s10959-020-01004-1 ) in the case $$\alpha \in (1,2)$$ α ∈ ( 1 , 2 ) . The main results include an intrinsic upper bound for the error of the approximation in a variant of Wasserstein distance that involves the characterizing differential operators for stable distributions and an application to the generalized central limit theorem. Due to the lack of first moment for the approximating sequence in the latter result, the proof strategy is significantly different from that in the integrable case. We rely on fine regularity estimates of the solution to Stein’s equation established in this paper.

Suggested Citation

  • Peng Chen & Ivan Nourdin & Lihu Xu & Xiaochuan Yang & Rui Zhang, 2022. "Non-integrable Stable Approximation by Stein’s Method," Journal of Theoretical Probability, Springer, vol. 35(2), pages 1137-1186, June.
  • Handle: RePEc:spr:jotpro:v:35:y:2022:i:2:d:10.1007_s10959-021-01094-5
    DOI: 10.1007/s10959-021-01094-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-021-01094-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-021-01094-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kusuoka, Seiichiro & Tudor, Ciprian A., 2012. "Stein’s method for invariant measures of diffusions via Malliavin calculus," Stochastic Processes and their Applications, Elsevier, vol. 122(4), pages 1627-1651.
    2. Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2012. "Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors," Papers 1212.6906, arXiv.org, revised Jan 2018.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brice Ozenne & Esben Budtz-Jørgensen & Sebastian Elgaard Ebert, 2023. "Controlling the familywise error rate when performing multiple comparisons in a linear latent variable model," Computational Statistics, Springer, vol. 38(1), pages 1-23, March.
    2. Eden, Richard & Víquez, Juan, 2015. "Nourdin–Peccati analysis on Wiener and Wiener–Poisson space for general distributions," Stochastic Processes and their Applications, Elsevier, vol. 125(1), pages 182-216.
    3. Hansen, Christian & Liao, Yuan, 2019. "The Factor-Lasso And K-Step Bootstrap Approach For Inference In High-Dimensional Economic Applications," Econometric Theory, Cambridge University Press, vol. 35(3), pages 465-509, June.
    4. Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013. "Uniform post selection inference for LAD regression and other z-estimation problems," CeMMAP working papers CWP74/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    5. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey, 2016. "Double machine learning for treatment and causal parameters," CeMMAP working papers 49/16, Institute for Fiscal Studies.
    6. Wu Wang & Xuming He & Zhongyi Zhu, 2020. "Statistical inference for multiple change‐point models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1149-1170, December.
    7. Philipp Bach & Victor Chernozhukov & Malte S. Kurz & Martin Spindler & Sven Klaassen, 2021. "DoubleML -- An Object-Oriented Implementation of Double Machine Learning in R," Papers 2103.09603, arXiv.org, revised Jun 2024.
    8. Demian Pouzo, 2014. "Bootstrap Consistency for Quadratic Forms of Sample Averages with Increasing Dimension," Papers 1411.2701, arXiv.org, revised Aug 2015.
    9. Dongwoo Kim & Daniel Wilhelm, 2017. "Powerful t-Tests in the presence of nonclassical measurement error," CeMMAP working papers CWP57/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    10. David M. Ritzwoller & Vasilis Syrgkanis, 2024. "Simultaneous Inference for Local Structural Parameters with Random Forests," Papers 2405.07860, arXiv.org, revised Sep 2024.
    11. Xingcai Zhou & Zhaoyang Jing & Chao Huang, 2024. "Distributed Bootstrap Simultaneous Inference for High-Dimensional Quantile Regression," Mathematics, MDPI, vol. 12(5), pages 1-54, February.
    12. Victor Chernozhukov & Christian Hansen & Martin Spindler, 2015. "Post-Selection and Post-Regularization Inference in Linear Models with Many Controls and Instruments," American Economic Review, American Economic Association, vol. 105(5), pages 486-490, May.
    13. Victor Chernozhukov & Whitney K Newey & Rahul Singh, 2022. "Debiased machine learning of global and local parameters using regularized Riesz representers [Semiparametric instrumental variable estimation of treatment response models]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 576-601.
    14. Jelena Bradic & Victor Chernozhukov & Whitney K. Newey & Yinchu Zhu, 2019. "Minimax Semiparametric Learning With Approximate Sparsity," Papers 1912.12213, arXiv.org, revised Aug 2022.
    15. Denis Chetverikov & Bradley Larsen & Christopher Palmer, 2016. "IV Quantile Regression for Group‐Level Treatments, With an Application to the Distributional Effects of Trade," Econometrica, Econometric Society, vol. 84, pages 809-833, March.
    16. Victor Chernozhukov & Christian Hansen & Martin Spindler, 2016. "hdm: High-Dimensional Metrics," CeMMAP working papers 37/16, Institute for Fiscal Studies.
    17. Chetverikov, Denis & Wilhelm, Daniel & Kim, Dongwoo, 2021. "An Adaptive Test Of Stochastic Monotonicity," Econometric Theory, Cambridge University Press, vol. 37(3), pages 495-536, June.
    18. Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2013. "Comparison and anti-concentration bounds for maxima of Gaussian random vectors," CeMMAP working papers CWP71/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    19. Thomas M. Russell, 2020. "Policy Transforms and Learning Optimal Policies," Papers 2012.11046, arXiv.org.
    20. Timothy B. Armstrong & Michal Kolesár & Soonwoo Kwon, 2020. "Bias-Aware Inference in Regularized Regression Models," Working Papers 2020-2, Princeton University. Economics Department..

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:35:y:2022:i:2:d:10.1007_s10959-021-01094-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.