IDEAS home Printed from https://ideas.repec.org/a/taf/emetrv/v43y2024i6p345-378.html
   My bibliography  Save this article

Powerful t-tests in the presence of nonclassical measurement error

Author

Listed:
  • Dongwoo Kim
  • Daniel Wilhelm

Abstract

This article proposes a powerful alternative to the t-test of the null hypothesis that a coefficient in a linear regression is equal to zero when a regressor is mismeasured. We assume there are two contaminated measurements of the regressor of interest. We allow the two measurement errors to be nonclassical in the sense that they may both be correlated with the true regressor, they may be correlated with each other, and we do not require any location normalizations on the measurement errors. We propose a new maximal t-statistic that is formed from the regression of the outcome onto a maximally weighted linear combination of the two measurements. The critical values of the test are easily computed via a multiplier bootstrap. In simulations, we show that this new test can be significantly more powerful than t-statistics based on OLS or IV estimates. Finally, we apply the proposed test to a study of returns to education based on twin data from the UK. With our maximal t-test, we can discover statistically significant returns to education when standard t-tests do not.

Suggested Citation

  • Dongwoo Kim & Daniel Wilhelm, 2024. "Powerful t-tests in the presence of nonclassical measurement error," Econometric Reviews, Taylor & Francis Journals, vol. 43(6), pages 345-378, July.
  • Handle: RePEc:taf:emetrv:v:43:y:2024:i:6:p:345-378
    DOI: 10.1080/07474938.2024.2334166
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07474938.2024.2334166
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07474938.2024.2334166?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Orazio Attanasio & Sarah Cattan & Emla Fitzsimons & Costas Meghir & Marta Rubio-Codina, 2015. "Estimating the Production Function for Human Capital: Results from a Randomized Control Trial in Colombia," Cowles Foundation Discussion Papers 1987, Cowles Foundation for Research in Economics, Yale University.
    2. David Card & Alan B. Krueger, 1994. "The Economic Return to School Quality: A Partial Survey," Working Papers 713, Princeton University, Department of Economics, Industrial Relations Section..
    3. Orazio Attanasio & Sarah Cattan & Emla Fitzsimons & Costas Meghir & Marta Rubio-Codina, 2020. "Estimating the Production Function for Human Capital: Results from a Randomized Controlled Trial in Colombia," American Economic Review, American Economic Association, vol. 110(1), pages 48-85, January.
    4. Bound, John & Brown, Charles & Mathiowetz, Nancy, 2001. "Measurement error in survey data," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 59, pages 3705-3843, Elsevier.
    5. Susanne M. Schennach, 2014. "Entropic Latent Variable Integration via Simulation," Econometrica, Econometric Society, vol. 82(1), pages 345-385, January.
    6. repec:fth:prinin:334 is not listed on IDEAS
    7. J.J. Heckman & E.E. Leamer (ed.), 2001. "Handbook of Econometrics," Handbook of Econometrics, Elsevier, edition 1, volume 5, number 5.
    8. Hausman, Jerry, 2015. "Specification tests in econometrics," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 38(2), pages 112-134.
    9. Flavio Cunha & James J. Heckman & Susanne M. Schennach, 2010. "Estimating the Technology of Cognitive and Noncognitive Skill Formation," Econometrica, Econometric Society, vol. 78(3), pages 883-931, May.
    10. Dorothe Bonjour & Lynn F. Cherkas & Jonathan E. Haskel & Denise D. Hawkes & Tim D. Spector, 2003. "Returns to Education: Evidence from U.K. Twins," American Economic Review, American Economic Association, vol. 93(5), pages 1799-1812, December.
    11. Orazio Attanasio & Costas Meghir & Emily Nix, 2015. "Human Capital Development and Parental Investment in India," Cowles Foundation Discussion Papers 2026R, Cowles Foundation for Research in Economics, Yale University, revised Jul 2017.
    12. Rouse, Cecilia Elena, 1999. "Further estimates of the economic return to schooling from a new sample of twins," Economics of Education Review, Elsevier, vol. 18(2), pages 149-157, April.
    13. Vikesh Amin, 2011. "Returns to Education: Evidence from UK Twins: Comment," American Economic Review, American Economic Association, vol. 101(4), pages 1629-1635, June.
    14. James Heckman & Rodrigo Pinto & Peter Savelyev, 2013. "Understanding the Mechanisms through Which an Influential Early Childhood Program Boosted Adult Outcomes," American Economic Review, American Economic Association, vol. 103(6), pages 2052-2086, October.
    15. Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2012. "Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors," Papers 1212.6906, arXiv.org, revised Jan 2018.
    16. Susanne M. Schennach, 2012. "Measurement error in nonlinear models - a review," CeMMAP working papers CWP41/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    17. Xiaohong Chen & Han Hong & Denis Nekipelov, 2011. "Nonlinear Models of Measurement Errors," Journal of Economic Literature, American Economic Association, vol. 49(4), pages 901-937, December.
    18. Daniel Wilhelm, 2018. "Testing for the presence of measurement error," CeMMAP working papers CWP45/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    19. Hu, Yingyao & Sasaki, Yuya, 2017. "Identification Of Paired Nonseparable Measurement Error Models," Econometric Theory, Cambridge University Press, vol. 33(4), pages 955-979, August.
    20. Young Jun Lee & Daniel Wilhelm, 2020. "Testing for the presence of measurement error in Stata," Stata Journal, StataCorp LP, vol. 20(2), pages 382-404, June.
    21. Ashenfelter, Orley & Krueger, Alan B, 1994. "Estimates of the Economic Returns to Schooling from a New Sample of Twins," American Economic Review, American Economic Association, vol. 84(5), pages 1157-1173, December.
    22. David Card & Alan Krueger, 1994. "The Economic Return to School Quality: A Partial Survey," Working Papers 713, Princeton University, Department of Economics, Industrial Relations Section..
    23. Aigner, Dennis J. & Hsiao, Cheng & Kapteyn, Arie & Wansbeek, Tom, 1984. "Latent variable models in econometrics," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 23, pages 1321-1393, Elsevier.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel Wilhelm, 2018. "Testing for the presence of measurement error," CeMMAP working papers CWP45/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    2. Young Jun Lee & Daniel Wilhelm, 2020. "Testing for the presence of measurement error in Stata," Stata Journal, StataCorp LP, vol. 20(2), pages 382-404, June.
    3. Daniel Wilhelm, 2015. "Identification and estimation of nonparametric panel data regressions with measurement error," CeMMAP working papers CWP34/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Alison Andrew & Orazio Attanasio & Raquel Bernal & Lina Cardona Sosa & Sonya Krutikova & Marta Rubio-Codina, 2019. "Preschool Quality and Child Development," NBER Working Papers 26191, National Bureau of Economic Research, Inc.
    5. Samuel Berlinski & Maria Marta Ferreyra & Luca Flabbi & Juan David Martin, 2024. "Childcare Markets, Parental Labor Supply, and Child Development," Journal of Political Economy, University of Chicago Press, vol. 132(6), pages 2113-2177.
    6. Jorge Rodriguez, 2017. "Understanding the Effects of Income and Child Care Subsidies on Children's Academic Achievement," 2017 Papers pro1077, Job Market Papers.
    7. Attanasio, Orazio & Blundell, Richard & Conti, Gabriella & Mason, Giacomo, 2020. "Inequality in socio-emotional skills: A cross-cohort comparison," Journal of Public Economics, Elsevier, vol. 191(C).
    8. Kautz, Tim & Heckman, James J. & Diris, Ron & ter Weel, Bas & Borghans, Lex, 2014. "Fostering and Measuring Skills: Improving Cognitive and Non-Cognitive Skills to Promote Lifetime Success," IZA Discussion Papers 8696, Institute of Labor Economics (IZA).
    9. List, John A. & Momeni, Fatemeh & Zenou, Yves, 2019. "Are Estimates of Early Education Programs Too Pessimistic? Evidence from a Large-Scale Field Experiment that Causally Measures Neighbor Effects," Working Paper Series 1293, Research Institute of Industrial Economics.
    10. Zenou, Yves & List, John & Momeni, Fatemeh, 2019. "Are Estimates of Early Education Programs Too Pessimistic? Evidence from a Large-Scale Field Experiment that Causally Measures," CEPR Discussion Papers 13725, C.E.P.R. Discussion Papers.
    11. Elizabeth M. Caucutt & Lance Lochner, 2020. "Early and Late Human Capital Investments, Borrowing Constraints, and the Family," Journal of Political Economy, University of Chicago Press, vol. 128(3), pages 1065-1147.
    12. Orazio Attanasio & Raquel Bernal & Michele Giannola & Milagros Nores, 2021. "Child Development in the Early Years: Parental Investment and the Changing Dynamics of Different Domains," CSEF Working Papers 626, Centre for Studies in Economics and Finance (CSEF), University of Naples, Italy.
    13. James Heckman & Tim Kautz, 2013. "Fostering and Measuring Skills: Interventions That Improve Character and Cognition," Working Papers 2013-019, Human Capital and Economic Opportunity Working Group.
    14. Hu, Yingyao, 2017. "The econometrics of unobservables: Applications of measurement error models in empirical industrial organization and labor economics," Journal of Econometrics, Elsevier, vol. 200(2), pages 154-168.
    15. Colm Harmon & Hessel Oosterbeek, 2000. "The Returns to Education: A Review of Evidence, Issues and Deficiencies in the Literature," CEE Discussion Papers 0005, Centre for the Economics of Education, LSE.
    16. Miller, Paul & Mulvey, Charles & Martin, Nick, 2006. "The return to schooling: Estimates from a sample of young Australian twins," Labour Economics, Elsevier, vol. 13(5), pages 571-587, October.
    17. Achyuta Adhvaryu & Anant Nyshadham & Jorge A. Tamayo, 2019. "Managerial Quality and Productivity Dynamics," NBER Working Papers 25852, National Bureau of Economic Research, Inc.
    18. Victoria Baranov & Sonia Bhalotra & Pietro Biroli & Joanna Maselko, 2017. "Maternal Depression, Women’s Empowerment, and Parental Investment: Evidence from a Large Randomized Control Trial," CHILD Working Papers Series 60 JEL Classification: I1, Centre for Household, Income, Labour and Demographic Economics (CHILD) - CCA.
    19. Gregory Clark & Christian Abildgaard Nielsen, 2024. "The Returns to Education: A Meta-study," Working Papers 0249, European Historical Economics Society (EHES).
    20. Orazio Attanasio & Raquel Bernal & Michele Giannola & Milagros Nores, 2020. "Child Development in the Early Years: Parental Investment and the Changing Dynamics of Different Dimensions," NBER Working Papers 27812, National Bureau of Economic Research, Inc.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:43:y:2024:i:6:p:345-378. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.tandfonline.com/LECR20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.