IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v122y2012i4p1627-1651.html
   My bibliography  Save this article

Stein’s method for invariant measures of diffusions via Malliavin calculus

Author

Listed:
  • Kusuoka, Seiichiro
  • Tudor, Ciprian A.

Abstract

Given a random variable F regular enough in the sense of the Malliavin calculus, we are able to measure the distance between its law and any probability measure with a density function which is continuous, bounded, strictly positive on an interval in the real line and admits finite variance. The bounds are given in terms of the Malliavin derivative of F. Our approach is based on the theory of Itô diffusions and the stochastic calculus of variations. Several examples are considered in order to illustrate our general results.

Suggested Citation

  • Kusuoka, Seiichiro & Tudor, Ciprian A., 2012. "Stein’s method for invariant measures of diffusions via Malliavin calculus," Stochastic Processes and their Applications, Elsevier, vol. 122(4), pages 1627-1651.
  • Handle: RePEc:eee:spapps:v:122:y:2012:i:4:p:1627-1651
    DOI: 10.1016/j.spa.2012.02.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414912000270
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2012.02.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Viens, Frederi G., 2009. "Stein's lemma, Malliavin calculus, and tail bounds, with application to polymer fluctuation exponent," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3671-3698, October.
    2. Ait-Sahalia, Yacine, 1996. "Nonparametric Pricing of Interest Rate Derivative Securities," Econometrica, Econometric Society, vol. 64(3), pages 527-560, May.
    3. Bo Martin Bibby & Michael Sørensen, 2001. "Simplified Estimating Functions for Diffusion Models with a High‐dimensional Parameter," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 28(1), pages 99-112, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arras, Benjamin & Azmoodeh, Ehsan & Poly, Guillaume & Swan, Yvik, 2019. "A bound on the Wasserstein-2 distance between linear combinations of independent random variables," Stochastic Processes and their Applications, Elsevier, vol. 129(7), pages 2341-2375.
    2. Tudor, Ciprian A., 2014. "Chaos expansion and asymptotic behavior of the Pareto distribution," Statistics & Probability Letters, Elsevier, vol. 91(C), pages 62-68.
    3. Christophe Ley & Gesine Reinert & Yvik Swan, 2014. "Approximate Computation of Expectations: the Canonical Stein Operator," Working Papers ECARES ECARES 2014-36, ULB -- Universite Libre de Bruxelles.
    4. Gaunt, Robert E., 2019. "Stein operators for variables form the third and fourth Wiener chaoses," Statistics & Probability Letters, Elsevier, vol. 145(C), pages 118-126.
    5. Privault, N. & Yam, S.C.P. & Zhang, Z., 2019. "Poisson discretizations of Wiener functionals and Malliavin operators with Wasserstein estimates," Stochastic Processes and their Applications, Elsevier, vol. 129(9), pages 3376-3405.
    6. Yoon-Tae Kim & Hyun-Suk Park, 2023. "Bound for an Approximation of Invariant Density of Diffusions via Density Formula in Malliavin Calculus," Mathematics, MDPI, vol. 11(10), pages 1-18, May.
    7. Peng Chen & Ivan Nourdin & Lihu Xu & Xiaochuan Yang & Rui Zhang, 2022. "Non-integrable Stable Approximation by Stein’s Method," Journal of Theoretical Probability, Springer, vol. 35(2), pages 1137-1186, June.
    8. Eden, Richard & Víquez, Juan, 2015. "Nourdin–Peccati analysis on Wiener and Wiener–Poisson space for general distributions," Stochastic Processes and their Applications, Elsevier, vol. 125(1), pages 182-216.
    9. Ley, Christophe, 2023. "When the score function is the identity function - A tale of characterizations of the normal distribution," Econometrics and Statistics, Elsevier, vol. 26(C), pages 153-160.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Posch, Olaf, 2009. "Structural estimation of jump-diffusion processes in macroeconomics," Journal of Econometrics, Elsevier, vol. 153(2), pages 196-210, December.
    2. Dennis Kristensen, 2007. "Nonparametric Estimation and Misspecification Testing of Diffusion Models," CREATES Research Papers 2007-01, Department of Economics and Business Economics, Aarhus University.
    3. Broadie, Mark & Detemple, Jerome & Ghysels, Eric & Torres, Olivier, 2000. "Nonparametric estimation of American options' exercise boundaries and call prices," Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1829-1857, October.
    4. V. L. Martin & G. M. Martin & G. C. Lim, 2005. "Parametric pricing of higher order moments in S&P500 options," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(3), pages 377-404.
    5. Carrasco, Marine & Chernov, Mikhaël & Florens, Jean-Pierre & Ghysels, Eric, 2000. "Efficient Estimation of Jump Diffusions and General Dynamic Models with a Continuum of Moment Conditions," IDEI Working Papers 116, Institut d'Économie Industrielle (IDEI), Toulouse, revised 2002.
    6. Ang, Andrew & Kristensen, Dennis, 2012. "Testing conditional factor models," Journal of Financial Economics, Elsevier, vol. 106(1), pages 132-156.
    7. Hagmann, M. & Scaillet, O., 2007. "Local multiplicative bias correction for asymmetric kernel density estimators," Journal of Econometrics, Elsevier, vol. 141(1), pages 213-249, November.
    8. Chen, Bin & Song, Zhaogang, 2013. "Testing whether the underlying continuous-time process follows a diffusion: An infinitesimal operator-based approach," Journal of Econometrics, Elsevier, vol. 173(1), pages 83-107.
    9. Ghysels, E. & Ng, S., 1996. "A Semi-Parametric Factor Model for Interest Rates," Cahiers de recherche 9612, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    10. Rosenberg, Joshua V., 1998. "Pricing multivariate contingent claims using estimated risk-neutral density functions," Journal of International Money and Finance, Elsevier, vol. 17(2), pages 229-247, April.
    11. Laurini, Márcio P., 2007. "Imposing No-Arbitrage Conditions In Implied Volatility Surfaces Using Constrained Smoothing Splines," Insper Working Papers wpe_89, Insper Working Paper, Insper Instituto de Ensino e Pesquisa.
    12. Fernandez, Viviana, 2001. "A nonparametric approach to model the term structure of interest rates: The case of Chile," International Review of Financial Analysis, Elsevier, vol. 10(2), pages 99-122.
    13. Ait-Sahalia, Yacine & Lo, Andrew W., 2000. "Nonparametric risk management and implied risk aversion," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 9-51.
    14. Stefania D'Amico, 2004. "Density Estimation and Combination under Model Ambiguity," Computing in Economics and Finance 2004 273, Society for Computational Economics.
    15. Yu, Jun, 2012. "Bias in the estimation of the mean reversion parameter in continuous time models," Journal of Econometrics, Elsevier, vol. 169(1), pages 114-122.
    16. Yacine Aït‐Sahalia, 2002. "Telling from Discrete Data Whether the Underlying Continuous‐Time Model Is a Diffusion," Journal of Finance, American Finance Association, vol. 57(5), pages 2075-2112, October.
    17. Fornari, Fabio & Mele, Antonio, 2001. "Recovering the probability density function of asset prices using garch as diffusion approximations," Journal of Empirical Finance, Elsevier, vol. 8(1), pages 83-110, March.
    18. Adam Canopius, 2006. "Practitioners' Corner," Journal of Financial Econometrics, Oxford University Press, vol. 4(2), pages 346-351.
    19. repec:mth:ijafr8:v:8:y:2018:i:4:p:248-286 is not listed on IDEAS
    20. Orazio Di Miscia, 2005. "Nonparametric estimation of diffusion process: a closer look," Finance 0504016, University Library of Munich, Germany.
    21. Torben G. Andersen & Luca Benzoni & Jesper Lund, 2002. "An Empirical Investigation of Continuous‐Time Equity Return Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1239-1284, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:122:y:2012:i:4:p:1627-1651. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.