The central limit theorem for time series regression
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Morten Ørregaard Nielsen, 2005.
"Semiparametric Estimation in Time‐Series Regression with Long‐Range Dependence,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 26(2), pages 279-304, March.
- Nielsen, Morten Oe., "undated". "Semiparametric Estimation in Time Series Regression with Long Range Dependence," Economics Working Papers 2002-17, Department of Economics and Business Economics, Aarhus University.
- Barry G. Quinn, 2021. "Fisher's g Revisited," International Statistical Review, International Statistical Institute, vol. 89(2), pages 402-419, August.
- Ronald Kwon & Brigitte Flores & Haydee Yonamine, 2018. "Spatial Segregation and the Impact of Linguistic Multicultural Policies Within the USA," Journal of International Migration and Integration, Springer, vol. 19(2), pages 213-232, May.
- Giraitis, Liudas & Robinson, Peter M., 2001. "Parametric estimation under long-range dependence," LSE Research Online Documents on Economics 2227, London School of Economics and Political Science, LSE Library.
- Biao Wu, Wei & Min, Wanli, 2005. "On linear processes with dependent innovations," Stochastic Processes and their Applications, Elsevier, vol. 115(6), pages 939-958, June.
- Wang, Qiying & Phillips, Peter C.B., 2009.
"Asymptotic Theory For Local Time Density Estimation And Nonparametric Cointegrating Regression,"
Econometric Theory, Cambridge University Press, vol. 25(3), pages 710-738, June.
- Qiying Wang & Peter C.B. Phillips, 2006. "Asymptotic Theory for Local Time Density Estimation and Nonparametric Cointegrating Regression," Cowles Foundation Discussion Papers 1594, Cowles Foundation for Research in Economics, Yale University.
- Dedecker, Jérôme & Merlevède, Florence, 2011. "Rates of convergence in the central limit theorem for linear statistics of martingale differences," Stochastic Processes and their Applications, Elsevier, vol. 121(5), pages 1013-1043, May.
- Mynbayev, Kairat & Darkenbayeva, Gulsim, 2019. "Analyzing variance in central limit theorems," MPRA Paper 101685, University Library of Munich, Germany.
- Liudas Giraitis & Peter M Robinson, 2001. "Parametric Estimation under Long-Range Dependence," STICERD - Econometrics Paper Series 416, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
- Jérôme Dedecker & Florence Merlevède & Dalibor Volný, 2007. "On the Weak Invariance Principle for Non-Adapted Sequences under Projective Criteria," Journal of Theoretical Probability, Springer, vol. 20(4), pages 971-1004, December.
- Cuny, Christophe & Fan, Ai Hua, 2017. "Study of almost everywhere convergence of series by mean of martingale methods," Stochastic Processes and their Applications, Elsevier, vol. 127(8), pages 2725-2750.
- Morten Ø. Nielsen & Per Houmann Frederiksen, 2008. "Fully Modified Narrow-band Least Squares Estimation Of Stationary Fractional Cointegration," Working Paper 1171, Economics Department, Queen's University.
- Wang, Qiying & Lin, Yan-Xia & Gulati, Chandra M., 2001. "Asymptotics for moving average processes with dependent innovations," Statistics & Probability Letters, Elsevier, vol. 54(4), pages 347-356, October.
- Sayar Karmakar & Marek Chudy & Wei Biao Wu, 2020. "Long-term prediction intervals with many covariates," Papers 2012.08223, arXiv.org, revised Sep 2021.
- James A. Duffy, 2015. "Uniform Convergence Rates over Maximal Domains in Structural Nonparametric Cointegrating Regression," Economics Papers 2015-W03, Economics Group, Nuffield College, University of Oxford.
- Robinson, Peter M., 1997. "Large-sample inference for nonparametric regression with dependent errors," LSE Research Online Documents on Economics 302, London School of Economics and Political Science, LSE Library.
More about this item
Keywords
Central limit theorem invariance principle regression mixing weak mixing martingale;Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:9:y:1979:i:3:p:281-289. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.