IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1812.03475.html
   My bibliography  Save this paper

A supreme test for periodic explosive GARCH

Author

Listed:
  • Stefan Richter
  • Weining Wang
  • Wei Biao Wu

Abstract

We develop a uniform test for detecting and dating explosive behavior of a strictly stationary GARCH$(r,s)$ (generalized autoregressive conditional heteroskedasticity) process. Namely, we test the null hypothesis of a globally stable GARCH process with constant parameters against an alternative where there is an 'abnormal' period with changed parameter values. During this period, the change may lead to an explosive behavior of the volatility process. It is assumed that both the magnitude and the timing of the breaks are unknown. We develop a double supreme test for the existence of a break, and then provide an algorithm to identify the period of change. Our theoretical results hold under mild moment assumptions on the innovations of the GARCH process. Technically, the existing properties for the QMLE in the GARCH model need to be reinvestigated to hold uniformly over all possible periods of change. The key results involve a uniform weak Bahadur representation for the estimated parameters, which leads to weak convergence of the test statistic to the supreme of a Gaussian Process. In simulations we show that the test has good size and power for reasonably large time series lengths. We apply the test to Apple asset returns and Bitcoin returns.

Suggested Citation

  • Stefan Richter & Weining Wang & Wei Biao Wu, 2018. "A supreme test for periodic explosive GARCH," Papers 1812.03475, arXiv.org.
  • Handle: RePEc:arx:papers:1812.03475
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1812.03475
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. David I. Harvey & Stephen J. Leybourne & Yang Zu, 2019. "Testing explosive bubbles with time-varying volatility," Econometric Reviews, Taylor & Francis Journals, vol. 38(10), pages 1131-1151, November.
    2. Nick Bloom, 2007. "Uncertainty and the Dynamics of R&D," American Economic Review, American Economic Association, vol. 97(2), pages 250-255, May.
    3. Peter C. B. Phillips & Yangru Wu & Jun Yu, 2011. "EXPLOSIVE BEHAVIOR IN THE 1990s NASDAQ: WHEN DID EXUBERANCE ESCALATE ASSET VALUES?," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 52(1), pages 201-226, February.
    4. Kyle Jurado & Sydney C. Ludvigson & Serena Ng, 2015. "Measuring Uncertainty," American Economic Review, American Economic Association, vol. 105(3), pages 1177-1216, March.
    5. Bougerol, Philippe & Picard, Nico, 1992. "Stationarity of Garch processes and of some nonnegative time series," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 115-127.
    6. Christian M Hafner, 2020. "Testing for Bubbles in Cryptocurrencies with Time-Varying Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 18(2), pages 233-249.
    7. Lee, Sang-Won & Hansen, Bruce E., 1994. "Asymptotic Theory for the Garch(1,1) Quasi-Maximum Likelihood Estimator," Econometric Theory, Cambridge University Press, vol. 10(1), pages 29-52, March.
    8. Jianqing Fan & Lei Qi & Dacheng Xiu, 2014. "Quasi-Maximum Likelihood Estimation of GARCH Models With Heavy-Tailed Likelihoods," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(2), pages 178-191, April.
    9. Søren Tolver Jensen & Anders Rahbek, 2004. "Asymptotic Normality of the QMLE Estimator of ARCH in the Nonstationary Case," Econometrica, Econometric Society, vol. 72(2), pages 641-646, March.
    10. Biao Wu, Wei & Min, Wanli, 2005. "On linear processes with dependent innovations," Stochastic Processes and their Applications, Elsevier, vol. 115(6), pages 939-958, June.
    11. Liang Peng, 2003. "Least absolute deviations estimation for ARCH and GARCH models," Biometrika, Biometrika Trust, vol. 90(4), pages 967-975, December.
    12. Peng, Liang & Yao, Qiwei, 2003. "Least absolute deviations estimation for ARCH and GARCH models," LSE Research Online Documents on Economics 5828, London School of Economics and Political Science, LSE Library.
    13. Nelson, Daniel B., 1990. "Stationarity and Persistence in the GARCH(1,1) Model," Econometric Theory, Cambridge University Press, vol. 6(3), pages 318-334, September.
    14. Christian Francq & Jean‐Michel Zakoïan, 2012. "Strict Stationarity Testing and Estimation of Explosive and Stationary Generalized Autoregressive Conditional Heteroscedasticity Models," Econometrica, Econometric Society, vol. 80(2), pages 821-861, March.
    15. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefan Richter & Weining Wang & Wei Biao Wu, 2023. "Testing for parameter change epochs in GARCH time series," The Econometrics Journal, Royal Economic Society, vol. 26(3), pages 467-491.
    2. Li, Dong & Ling, Shiqing & Zhu, Ke, 2016. "ZD-GARCH model: a new way to study heteroscedasticity," MPRA Paper 68621, University Library of Munich, Germany.
    3. Li, Dong & Zhang, Xingfa & Zhu, Ke & Ling, Shiqing, 2018. "The ZD-GARCH model: A new way to study heteroscedasticity," Journal of Econometrics, Elsevier, vol. 202(1), pages 1-17.
    4. Pedersen, Rasmus Søndergaard & Rahbek, Anders, 2016. "Nonstationary GARCH with t-distributed innovations," Economics Letters, Elsevier, vol. 138(C), pages 19-21.
    5. Zhu, Ke & Ling, Shiqing, 2013. "Global self-weighted and local quasi-maximum exponential likelihood estimators for ARMA-GARCH/IGARCH models," MPRA Paper 51509, University Library of Munich, Germany.
    6. Hill, Jonathan B. & Prokhorov, Artem, 2016. "GEL estimation for heavy-tailed GARCH models with robust empirical likelihood inference," Journal of Econometrics, Elsevier, vol. 190(1), pages 18-45.
    7. Wang, Xuqin & Li, Muyi, 2023. "Bootstrapping the transformed goodness-of-fit test on heavy-tailed GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
    8. Dennis Kristensen, 2009. "On stationarity and ergodicity of the bilinear model with applications to GARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(1), pages 125-144, January.
    9. Aguilar, Mike & Hill, Jonathan B., 2015. "Robust score and portmanteau tests of volatility spillover," Journal of Econometrics, Elsevier, vol. 184(1), pages 37-61.
    10. Zhu, Ke & Li, Wai Keung, 2013. "A new Pearson-type QMLE for conditionally heteroskedastic models," MPRA Paper 52344, University Library of Munich, Germany.
    11. Aknouche, Abdelhakim, 2015. "Unified quasi-maximum likelihood estimation theory for stable and unstable Markov bilinear processes," MPRA Paper 69572, University Library of Munich, Germany.
    12. Li, Dong & Li, Muyi & Wu, Wuqing, 2014. "On dynamics of volatilities in nonstationary GARCH models," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 86-90.
    13. Iglesias, Emma M. & Linton, Oliver, 2009. "Estimation of tail thickness parameters from GJR-GARCH models," UC3M Working papers. Economics we094726, Universidad Carlos III de Madrid. Departamento de Economía.
    14. Christian Francq & Jean-Michel Zakoïan, 2013. "Optimal predictions of powers of conditionally heteroscedastic processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(2), pages 345-367, March.
    15. Delaigle, Aurore & Meister, Alexander & Rombouts, Jeroen, 2016. "Root-T consistent density estimation in GARCH models," Journal of Econometrics, Elsevier, vol. 192(1), pages 55-63.
    16. Luger, Richard, 2012. "Finite-sample bootstrap inference in GARCH models with heavy-tailed innovations," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3198-3211.
    17. Rasmus Søndergaard Pedersen & Anders Rahbek, 2015. "Nonstationary ARCH and GARCH with t-distributed Innovations," CREATES Research Papers 2015-27, Department of Economics and Business Economics, Aarhus University.
    18. Chen, Min & Zhu, Ke, 2015. "Sign-based portmanteau test for ARCH-type models with heavy-tailed innovations," Journal of Econometrics, Elsevier, vol. 189(2), pages 313-320.
    19. Jianqing Fan & Lei Qi & Dacheng Xiu, 2014. "Quasi-Maximum Likelihood Estimation of GARCH Models With Heavy-Tailed Likelihoods," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(2), pages 178-191, April.
    20. Linton, Oliver & Xiao, Zhijie, 2019. "Efficient estimation of nonparametric regression in the presence of dynamic heteroskedasticity," Journal of Econometrics, Elsevier, vol. 213(2), pages 608-631.

    More about this item

    JEL classification:

    • C00 - Mathematical and Quantitative Methods - - General - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1812.03475. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.