IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v41y1992i1p33-44.html
   My bibliography  Save this article

A central limit theorem for functions of a Markov chain with applications to shifts

Author

Listed:
  • Woodroofe, Michael

Abstract

A sufficient condition is developed for partial sums of a function of a stationary, ergodic Markov chain to be asymptotically normal. For Bernoulli and Lebesgue shifts, the condition may be related to the Fourier coefficients of the given function; and the latter condition is shown to be satisfied by most square integrable functions in the case of Bernoulli shifts.

Suggested Citation

  • Woodroofe, Michael, 1992. "A central limit theorem for functions of a Markov chain with applications to shifts," Stochastic Processes and their Applications, Elsevier, vol. 41(1), pages 33-44, May.
  • Handle: RePEc:eee:spapps:v:41:y:1992:i:1:p:33-44
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0304-4149(92)90145-G
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Biao Wu, Wei & Min, Wanli, 2005. "On linear processes with dependent innovations," Stochastic Processes and their Applications, Elsevier, vol. 115(6), pages 939-958, June.
    2. L. Ouchti & D. Volný, 2008. "A Conditional CLT which Fails for Ergodic Components," Journal of Theoretical Probability, Springer, vol. 21(3), pages 687-703, September.
    3. Alsmeyer, Gerold & Buckmann, Fabian, 2019. "An arcsine law for Markov random walks," Stochastic Processes and their Applications, Elsevier, vol. 129(1), pages 223-239.
    4. Holzmann, Hajo, 2005. "Martingale approximations for continuous-time and discrete-time stationary Markov processes," Stochastic Processes and their Applications, Elsevier, vol. 115(9), pages 1518-1529, September.
    5. Klicnarová, Jana & Volný, Dalibor, 2009. "On the exactness of the Wu-Woodroofe approximation," Stochastic Processes and their Applications, Elsevier, vol. 119(7), pages 2158-2165, July.
    6. Volný, Dalibor & Woodroofe, Michael, 2014. "Quenched central limit theorems for sums of stationary processes," Statistics & Probability Letters, Elsevier, vol. 85(C), pages 161-167.
    7. Gerold Alsmeyer & Chiranjib Mukherjee, 2023. "On Null-Homology and Stationary Sequences," Journal of Theoretical Probability, Springer, vol. 36(1), pages 1-25, March.
    8. Jérôme Dedecker & Florence Merlevède & Dalibor Volný, 2007. "On the Weak Invariance Principle for Non-Adapted Sequences under Projective Criteria," Journal of Theoretical Probability, Springer, vol. 20(4), pages 971-1004, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:41:y:1992:i:1:p:33-44. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.