IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v17y2004i4d10.1007_s10959-004-0578-x.html
   My bibliography  Save this article

Coupling for τ-Dependent Sequences and Applications

Author

Listed:
  • J. Dedecker

    (Laboratoire de Statistique Théorique et Appliquée)

  • C. Prieur

    (Laboratoire de Statistique et Probabilités)

Abstract

Let X be a real-valued random variable and $$M$$ a σ-algebra. We show that the minimum $${\mathbb{L}}^1$$ -distance between X and a random variable distributed as X and independant of $$M$$ can be viewed as a dependence coefficient τ( $$M$$ ,X) whose definition is comparable (but different) to that of the usual β-mixing coefficient between $$M$$ and σ(X). We compare this new coefficient to other well known measures of dependence, and we show that it can be easily computed in various situations, such as causal Bernoulli shifts or stable Markov chains defined via iterative random maps. Next, we use coupling techniques to obtain Bennett and Rosenthal-type inequalities for partial sums of τ-dependent sequences. The former is used to prove a strong invariance principle for partial sums.

Suggested Citation

  • J. Dedecker & C. Prieur, 2004. "Coupling for τ-Dependent Sequences and Applications," Journal of Theoretical Probability, Springer, vol. 17(4), pages 861-885, October.
  • Handle: RePEc:spr:jotpro:v:17:y:2004:i:4:d:10.1007_s10959-004-0578-x
    DOI: 10.1007/s10959-004-0578-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-004-0578-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-004-0578-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shao, Qi-Man, 1993. "Almost sure invariance principles for mixing sequences of random variables," Stochastic Processes and their Applications, Elsevier, vol. 48(2), pages 319-334, November.
    2. Magda Peligrad, 2001. "A Note on the Uniform Laws for Dependent Processes Via Coupling," Journal of Theoretical Probability, Springer, vol. 14(4), pages 979-988, October.
    3. Peligrad, Magda, 2002. "Some remarks on coupling of dependent random variables," Statistics & Probability Letters, Elsevier, vol. 60(2), pages 201-209, November.
    4. Jerôme Dedecker & Paul Doukhan, 2002. "A New Covariance Inequality and Applications," Working Papers 2002-25, Center for Research in Economics and Statistics.
    5. Doukhan, Paul & Louhichi, Sana, 1999. "A new weak dependence condition and applications to moment inequalities," Stochastic Processes and their Applications, Elsevier, vol. 84(2), pages 313-342, December.
    6. Major, Péter, 1978. "On the invariance principle for sums of independent identically distributed random variables," Journal of Multivariate Analysis, Elsevier, vol. 8(4), pages 487-517, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Davide Giraudo, 2017. "Holderian Weak Invariance Principle for Stationary Mixing Sequences," Journal of Theoretical Probability, Springer, vol. 30(1), pages 196-211, March.
    2. Babii, Andrii & Ball, Ryan T. & Ghysels, Eric & Striaukas, Jonas, 2023. "Machine learning panel data regressions with heavy-tailed dependent data: Theory and application," Journal of Econometrics, Elsevier, vol. 237(2).
    3. Xu, Haotian & Wang, Daren & Zhao, Zifeng & Yu, Yi, 2022. "Change point inference in high-dimensional regression models under temporal dependence," LIDAM Discussion Papers ISBA 2022027, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Demian Pouzo, 2024. "Maximal Inequalities for Empirical Processes under General Mixing Conditions with an Application to Strong Approximations," Papers 2402.11394, arXiv.org, revised Apr 2024.
    5. Fang Han & Yicheng Li, 2020. "Moment Bounds for Large Autocovariance Matrices Under Dependence," Journal of Theoretical Probability, Springer, vol. 33(3), pages 1445-1492, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jerôme Dedecker & Paul Doukhan, 2002. "A New Covariance Inequality and Applications," Working Papers 2002-25, Center for Research in Economics and Statistics.
    2. Hwang, Eunju & Shin, Dong Wan, 2014. "Infinite-order, long-memory heterogeneous autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 339-358.
    3. Guessoum, Zohra & Ould Saïd, Elias & Sadki, Ourida & Tatachak, Abdelkader, 2012. "A note on the Lynden-Bell estimator under association," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 1994-2000.
    4. Giuseppe Cavaliere & Dimitris N. Politis & Anders Rahbek & Paul Doukhan & Gabriel Lang & Anne Leucht & Michael H. Neumann, 2015. "Recent developments in bootstrap methods for dependent data," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(3), pages 290-314, May.
    5. Christophe Cuny & Florence Merlevède, 2015. "Strong Invariance Principles with Rate for “Reverse” Martingale Differences and Applications," Journal of Theoretical Probability, Springer, vol. 28(1), pages 137-183, March.
    6. Carvalho, Carlos & Masini, Ricardo & Medeiros, Marcelo C., 2018. "ArCo: An artificial counterfactual approach for high-dimensional panel time-series data," Journal of Econometrics, Elsevier, vol. 207(2), pages 352-380.
    7. Hwang, Eunju & Shin, Dong Wan, 2012. "Strong consistency of the stationary bootstrap under ψ-weak dependence," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 488-495.
    8. Eunju Hwang & Dong Shin, 2016. "Kernel estimators of mode under $$\psi $$ ψ -weak dependence," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 68(2), pages 301-327, April.
    9. Kojevnikov, Denis & Marmer, Vadim & Song, Kyungchul, 2021. "Limit theorems for network dependent random variables," Journal of Econometrics, Elsevier, vol. 222(2), pages 882-908.
    10. Moysiadis, Theodoros & Fokianos, Konstantinos, 2014. "On binary and categorical time series models with feedback," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 209-228.
    11. Dedecker, Jérôme & Prieur, Clémentine, 2007. "An empirical central limit theorem for dependent sequences," Stochastic Processes and their Applications, Elsevier, vol. 117(1), pages 121-142, January.
    12. McElroy, Tucker & Politis, Dimitris N., 2013. "Distribution theory for the studentized mean for long, short, and negative memory time series," Journal of Econometrics, Elsevier, vol. 177(1), pages 60-74.
    13. Wu, Wei Biao & Huang, Yinxiao & Huang, Yibi, 2010. "Kernel estimation for time series: An asymptotic theory," Stochastic Processes and their Applications, Elsevier, vol. 120(12), pages 2412-2431, December.
    14. Sancetta, Alessio, 2008. "Sample covariance shrinkage for high dimensional dependent data," Journal of Multivariate Analysis, Elsevier, vol. 99(5), pages 949-967, May.
    15. Pinkse, Joris & Shen, Lihong & Slade, Margaret, 2007. "A central limit theorem for endogenous locations and complex spatial interactions," Journal of Econometrics, Elsevier, vol. 140(1), pages 215-225, September.
    16. Mamadou Lamine Diop & William Kengne, 2023. "A general procedure for change-point detection in multivariate time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 1-33, March.
    17. Xuan Liang & Jiti Gao & Xiaodong Gong, 2022. "Semiparametric Spatial Autoregressive Panel Data Model with Fixed Effects and Time-Varying Coefficients," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(4), pages 1784-1802, October.
    18. Christis Katsouris, 2022. "Asymptotic Theory for Unit Root Moderate Deviations in Quantile Autoregressions and Predictive Regressions," Papers 2204.02073, arXiv.org, revised Aug 2023.
    19. Bashtova, Elena & Shashkin, Alexey, 2022. "Strong Gaussian approximation for cumulative processes," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 1-18.
    20. Cui, Yunwei & Zheng, Qi, 2017. "Conditional maximum likelihood estimation for a class of observation-driven time series models for count data," Statistics & Probability Letters, Elsevier, vol. 123(C), pages 193-201.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:17:y:2004:i:4:d:10.1007_s10959-004-0578-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.