IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v20y2007i2d10.1007_s10959-007-0096-8.html
   My bibliography  Save this article

Weak Convergence of Laws on ℝ K with Common Marginals

Author

Listed:
  • Alessio Sancetta

    (University of Cambridge)

Abstract

We present a result on topologically equivalent integral metrics as reported by Rachev (Probability Metrics and the Stability of Stochastic Models, Wiley, Chichester, 1991) and Müller (J. Appl. Probab. 29, 429–443, 1997) that metrize weak convergence of laws with common marginals. This result is relevant for applications, as shown in a few simple examples.

Suggested Citation

  • Alessio Sancetta, 2007. "Weak Convergence of Laws on ℝ K with Common Marginals," Journal of Theoretical Probability, Springer, vol. 20(2), pages 371-380, June.
  • Handle: RePEc:spr:jotpro:v:20:y:2007:i:2:d:10.1007_s10959-007-0096-8
    DOI: 10.1007/s10959-007-0096-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-007-0096-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-007-0096-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Doukhan, Paul & Louhichi, Sana, 1999. "A new weak dependence condition and applications to moment inequalities," Stochastic Processes and their Applications, Elsevier, vol. 84(2), pages 313-342, December.
    2. Rüschendorf, Ludger & de Valk, Vincent, 1993. "On regression representations of stochastic processes," Stochastic Processes and their Applications, Elsevier, vol. 46(2), pages 183-198, June.
    3. Scarsini, Marco, 1989. "Copulae of probability measures on product spaces," Journal of Multivariate Analysis, Elsevier, vol. 31(2), pages 201-219, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sancetta, Alessio, 2007. "Nonparametric estimation of distributions with given marginals via Bernstein-Kantorovich polynomials: L1 and pointwise convergence theory," Journal of Multivariate Analysis, Elsevier, vol. 98(7), pages 1376-1390, August.
    2. Sancetta, Alessio, 2005. "Distance between nonidentically weakly dependent random vectors and Gaussian random vectors under the bounded Lipschitz metric," Statistics & Probability Letters, Elsevier, vol. 75(3), pages 158-168, December.
    3. Jerôme Dedecker & Paul Doukhan, 2002. "A New Covariance Inequality and Applications," Working Papers 2002-25, Center for Research in Economics and Statistics.
    4. Sancetta, A., 2005. "Copula Based Monte Carlo Integration in Financial Problems," Cambridge Working Papers in Economics 0506, Faculty of Economics, University of Cambridge.
    5. Hwang, Eunju & Shin, Dong Wan, 2014. "Infinite-order, long-memory heterogeneous autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 339-358.
    6. Mai Jan-Frederik & Schenk Steffen & Scherer Matthias, 2015. "Analyzing model robustness via a distortion of the stochastic root: A Dirichlet prior approach," Statistics & Risk Modeling, De Gruyter, vol. 32(3-4), pages 177-195, December.
    7. Guessoum, Zohra & Ould Saïd, Elias & Sadki, Ourida & Tatachak, Abdelkader, 2012. "A note on the Lynden-Bell estimator under association," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 1994-2000.
    8. Giuseppe Cavaliere & Dimitris N. Politis & Anders Rahbek & Paul Doukhan & Gabriel Lang & Anne Leucht & Michael H. Neumann, 2015. "Recent developments in bootstrap methods for dependent data," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(3), pages 290-314, May.
    9. Carvalho, Carlos & Masini, Ricardo & Medeiros, Marcelo C., 2018. "ArCo: An artificial counterfactual approach for high-dimensional panel time-series data," Journal of Econometrics, Elsevier, vol. 207(2), pages 352-380.
    10. Hwang, Eunju & Shin, Dong Wan, 2012. "Strong consistency of the stationary bootstrap under ψ-weak dependence," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 488-495.
    11. Eunju Hwang & Dong Shin, 2016. "Kernel estimators of mode under $$\psi $$ ψ -weak dependence," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 68(2), pages 301-327, April.
    12. Kojevnikov, Denis & Marmer, Vadim & Song, Kyungchul, 2021. "Limit theorems for network dependent random variables," Journal of Econometrics, Elsevier, vol. 222(2), pages 882-908.
    13. Moysiadis, Theodoros & Fokianos, Konstantinos, 2014. "On binary and categorical time series models with feedback," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 209-228.
    14. Dedecker, Jérôme & Prieur, Clémentine, 2007. "An empirical central limit theorem for dependent sequences," Stochastic Processes and their Applications, Elsevier, vol. 117(1), pages 121-142, January.
    15. McElroy, Tucker & Politis, Dimitris N., 2013. "Distribution theory for the studentized mean for long, short, and negative memory time series," Journal of Econometrics, Elsevier, vol. 177(1), pages 60-74.
    16. Wu, Wei Biao & Huang, Yinxiao & Huang, Yibi, 2010. "Kernel estimation for time series: An asymptotic theory," Stochastic Processes and their Applications, Elsevier, vol. 120(12), pages 2412-2431, December.
    17. Sancetta, Alessio, 2008. "Sample covariance shrinkage for high dimensional dependent data," Journal of Multivariate Analysis, Elsevier, vol. 99(5), pages 949-967, May.
    18. Pinkse, Joris & Shen, Lihong & Slade, Margaret, 2007. "A central limit theorem for endogenous locations and complex spatial interactions," Journal of Econometrics, Elsevier, vol. 140(1), pages 215-225, September.
    19. Mamadou Lamine Diop & William Kengne, 2023. "A general procedure for change-point detection in multivariate time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 1-33, March.
    20. Xuan Liang & Jiti Gao & Xiaodong Gong, 2022. "Semiparametric Spatial Autoregressive Panel Data Model with Fixed Effects and Time-Varying Coefficients," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(4), pages 1784-1802, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:20:y:2007:i:2:d:10.1007_s10959-007-0096-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.