IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v203y2024ics0047259x24000393.html
   My bibliography  Save this article

Adaptive directional estimator of the density in Rd for independent and mixing sequences

Author

Listed:
  • Ammous, Sinda
  • Dedecker, Jérôme
  • Duval, Céline

Abstract

A new multivariate density estimator for stationary sequences is obtained by Fourier inversion of the thresholded empirical characteristic function. This estimator does not depend on the choice of parameters related to the smoothness of the density; it is directly adaptive. We establish oracle inequalities valid for independent, α-mixing and τ-mixing sequences, which allows us to derive optimal convergence rates, up to a logarithmic loss. On general anisotropic Sobolev classes, the estimator adapts to the regularity of the unknown density but also achieves directional adaptivity. More precisely, the estimator is able to reach the convergence rate induced by the best Sobolev regularity of the density of AX, where A belongs to a class of invertible matrices describing all the possible directions. The estimator is easy to implement and numerically efficient. It depends on the calibration of a parameter for which we propose an innovative numerical selection procedure, using the Euler characteristic of the thresholded areas.

Suggested Citation

  • Ammous, Sinda & Dedecker, Jérôme & Duval, Céline, 2024. "Adaptive directional estimator of the density in Rd for independent and mixing sequences," Journal of Multivariate Analysis, Elsevier, vol. 203(C).
  • Handle: RePEc:eee:jmvana:v:203:y:2024:i:c:s0047259x24000393
    DOI: 10.1016/j.jmva.2024.105332
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X24000393
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2024.105332?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:203:y:2024:i:c:s0047259x24000393. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.