IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v47y2000i1p61-68.html
   My bibliography  Save this article

A triangular central limit theorem under a new weak dependence condition

Author

Listed:
  • Coulon-Prieur, Clémentine
  • Doukhan, Paul

Abstract

We use a new weak dependence condition from Doukhan and Louhichi (Stoch. Process. Appl. 1999, 84, 313-342) to provide a central limit theorem for triangular arrays; this result applies for linear arrays (as in Peligrad and Utev, Ann. Probab. 1997, 25(1), 443-456) and standard kernel density estimates under weak dependence. This extends on strong mixing and includes non-mixing Markov processes and associated or Gaussian sequences. We use Lindeberg method in Rio (Probab. Theory Related Fields 1996, 104, 255-282).

Suggested Citation

  • Coulon-Prieur, Clémentine & Doukhan, Paul, 2000. "A triangular central limit theorem under a new weak dependence condition," Statistics & Probability Letters, Elsevier, vol. 47(1), pages 61-68, March.
  • Handle: RePEc:eee:stapro:v:47:y:2000:i:1:p:61-68
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(99)00138-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Doukhan, Paul & Louhichi, Sana, 1999. "A new weak dependence condition and applications to moment inequalities," Stochastic Processes and their Applications, Elsevier, vol. 84(2), pages 313-342, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anton Schick & Wolfgang Wefelmeyer, 2008. "Root-n consistency in weighted L 1 -spaces for density estimators of invertible linear processes," Statistical Inference for Stochastic Processes, Springer, vol. 11(3), pages 281-310, October.
    2. Manel Kacem & Stéphane Loisel & Véronique Maume-Deschamps, 2016. "Some mixing properties of conditionally independent processes," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 45(5), pages 1241-1259, March.
    3. Hwang, Eunju & Shin, Dong Wan, 2012. "Strong consistency of the stationary bootstrap under ψ-weak dependence," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 488-495.
    4. Bardet, Jean-Marc & Surgailis, Donatas, 2013. "Moment bounds and central limit theorems for Gaussian subordinated arrays," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 457-473.
    5. Hwang, Eunju & Shin, Dong Wan, 2012. "Stationary bootstrap for kernel density estimators under ψ-weak dependence," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1581-1593.
    6. Eunju Hwang & Dong Shin, 2016. "Kernel estimators of mode under $$\psi $$ ψ -weak dependence," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 68(2), pages 301-327, April.
    7. Silva-García, V.M. & Flores-Carapia, R. & Rentería-Márquez, C. & Luna-Benoso, B. & Aldape-Pérez, M., 2018. "Substitution box generation using Chaos: An image encryption application," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 123-135.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El Ghouch, Anouar & Genton, Marc G. & Bouezmarni , Taoufik, 2012. "Measuring the Discrepancy of a Parametric Model via Local Polynomial Smoothing," LIDAM Discussion Papers ISBA 2012001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Jerôme Dedecker & Paul Doukhan, 2002. "A New Covariance Inequality and Applications," Working Papers 2002-25, Center for Research in Economics and Statistics.
    3. Paul Doukhan & Olivier Wintenberger, 2005. "An Invariance Principle for New Weakly Dependent Stationary Models using Sharp Moment Assumptions," Working Papers 2005-51, Center for Research in Economics and Statistics.
    4. Pierre Perron & Eduardo Zorita & Wen Cao & Clifford Hurvich & Philippe Soulier, 2017. "Drift in Transaction-Level Asset Price Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(5), pages 769-790, September.
    5. Bulinski, Alexander & Suquet, Charles, 2001. "Normal approximation for quasi-associated random fields," Statistics & Probability Letters, Elsevier, vol. 54(2), pages 215-226, September.
    6. Fokianos, Konstantinos, 2024. "Multivariate Count Time Series Modelling," Econometrics and Statistics, Elsevier, vol. 31(C), pages 100-116.
    7. Matteo Barigozzi & Matteo Luciani, 2019. "Quasi Maximum Likelihood Estimation and Inference of Large Approximate Dynamic Factor Models via the EM algorithm," Papers 1910.03821, arXiv.org, revised Sep 2024.
    8. Denis Kojevnikov, 2021. "The Bootstrap for Network Dependent Processes," Papers 2101.12312, arXiv.org.
    9. Hwang, Eunju & Shin, Dong Wan, 2014. "Infinite-order, long-memory heterogeneous autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 339-358.
    10. Berkes, István & Horváth, Lajos & Rice, Gregory, 2013. "Weak invariance principles for sums of dependent random functions," Stochastic Processes and their Applications, Elsevier, vol. 123(2), pages 385-403.
    11. Dehling, Herold & Durieu, Olivier, 2011. "Empirical processes of multidimensional systems with multiple mixing properties," Stochastic Processes and their Applications, Elsevier, vol. 121(5), pages 1076-1096, May.
    12. Tobias Adrian & Richard K. Crump & Erik Vogt, 2019. "Nonlinearity and Flight‐to‐Safety in the Risk‐Return Trade‐Off for Stocks and Bonds," Journal of Finance, American Finance Association, vol. 74(4), pages 1931-1973, August.
    13. Olivier Durieu & Marco Tusche, 2014. "An Empirical Process Central Limit Theorem for Multidimensional Dependent Data," Journal of Theoretical Probability, Springer, vol. 27(1), pages 249-277, March.
    14. Brendan K. Beare, 2007. "A New Mixing Condition," Economics Series Working Papers 348, University of Oxford, Department of Economics.
    15. David Coupier & Paul Doukhan & Bernard Ycart, 2005. "Zero-one Laws for Binary Random Fields," Working Papers 2005-47, Center for Research in Economics and Statistics.
    16. Vasiliki Christou & Konstantinos Fokianos, 2014. "Quasi-Likelihood Inference For Negative Binomial Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(1), pages 55-78, January.
    17. Xu, Xingbai & Lee, Lung-fei, 2018. "Sieve maximum likelihood estimation of the spatial autoregressive Tobit model," Journal of Econometrics, Elsevier, vol. 203(1), pages 96-112.
    18. Liliana Forzani & Ricardo Fraiman & Pamela Llop, 2013. "Density estimation for spatial-temporal models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 321-342, June.
    19. Berkes, István & Hörmann, Siegfried & Schauer, Johannes, 2009. "Asymptotic results for the empirical process of stationary sequences," Stochastic Processes and their Applications, Elsevier, vol. 119(4), pages 1298-1324, April.
    20. Guessoum, Zohra & Ould Saïd, Elias & Sadki, Ourida & Tatachak, Abdelkader, 2012. "A note on the Lynden-Bell estimator under association," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 1994-2000.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:47:y:2000:i:1:p:61-68. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.