IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v98y1998i3d10.1023_a1022680114518.html
   My bibliography  Save this article

Error Stability Properties of Generalized Gradient-Type Algorithms

Author

Listed:
  • M. V. Solodov

    (Instituto de Matemática Pura e Aplicada)

  • S. K. Zavriev

    (Moscow State University)

Abstract

We present a unified framework for convergence analysis of generalized subgradient-type algorithms in the presence of perturbations. A principal novel feature of our analysis is that perturbations need not tend to zero in the limit. It is established that the iterates of the algorithms are attracted, in a certain sense, to an ɛ-stationary set of the problem, where ɛ depends on the magnitude of perturbations. Characterization of the attraction sets is given in the general (nonsmooth and nonconvex) case. The results are further strengthened for convex, weakly sharp, and strongly convex problems. Our analysis extends and unifies previously known results on convergence and stability properties of gradient and subgradient methods, including their incremental, parallel, and heavy ball modifications.

Suggested Citation

  • M. V. Solodov & S. K. Zavriev, 1998. "Error Stability Properties of Generalized Gradient-Type Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 98(3), pages 663-680, September.
  • Handle: RePEc:spr:joptap:v:98:y:1998:i:3:d:10.1023_a:1022680114518
    DOI: 10.1023/A:1022680114518
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1022680114518
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1022680114518?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. O. L. Mangasarian, 1993. "Mathematical Programming in Neural Networks," INFORMS Journal on Computing, INFORMS, vol. 5(4), pages 349-360, November.
    2. M. V. Solodov, 1997. "Convergence Analysis of Perturbed Feasible Descent Methods," Journal of Optimization Theory and Applications, Springer, vol. 93(2), pages 337-353, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Regina S. Burachik & Yaohua Hu & Xiaoqi Yang, 2022. "Interior quasi-subgradient method with non-Euclidean distances for constrained quasi-convex optimization problems in hilbert spaces," Journal of Global Optimization, Springer, vol. 83(2), pages 249-271, June.
    2. Matthias Rottmann & Kira Maag & Mathis Peyron & Hanno Gottschalk & Nataša Krejić, 2023. "Detection of Iterative Adversarial Attacks via Counter Attack," Journal of Optimization Theory and Applications, Springer, vol. 198(3), pages 892-929, September.
    3. M. V. Solodov, 2003. "On Approximations with Finite Precision in Bundle Methods for Nonsmooth Optimization," Journal of Optimization Theory and Applications, Springer, vol. 119(1), pages 151-165, October.
    4. Xiaojing Xu & Jinpeng Ma & Xiaoping Xie, 2019. "Price Convergence under a Probabilistic Double Auction," Computational Economics, Springer;Society for Computational Economics, vol. 54(3), pages 1113-1155, October.
    5. Wenma Jin & Yair Censor & Ming Jiang, 2016. "Bounded perturbation resilience of projected scaled gradient methods," Computational Optimization and Applications, Springer, vol. 63(2), pages 365-392, March.
    6. Larsson, Torbjorn & Patriksson, Michael & Stromberg, Ann-Brith, 2003. "On the convergence of conditional [var epsilon]-subgradient methods for convex programs and convex-concave saddle-point problems," European Journal of Operational Research, Elsevier, vol. 151(3), pages 461-473, December.
    7. Elena Tovbis & Vladimir Krutikov & Predrag Stanimirović & Vladimir Meshechkin & Aleksey Popov & Lev Kazakovtsev, 2023. "A Family of Multi-Step Subgradient Minimization Methods," Mathematics, MDPI, vol. 11(10), pages 1-24, May.
    8. Peng Zhang & Gejun Bao, 2018. "An Incremental Subgradient Method on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 176(3), pages 711-727, March.
    9. S. Sundhar Ram & A. Nedić & V. V. Veeravalli, 2010. "Distributed Stochastic Subgradient Projection Algorithms for Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 147(3), pages 516-545, December.
    10. Jinpeng Ma & Qiongling Li, 2016. "Convergence of price processes under two dynamic double auctions," The Journal of Mechanism and Institution Design, Society for the Promotion of Mechanism and Institution Design, University of York, vol. 1(1), pages 1-44, December.
    11. Grégory Emiel & Claudia Sagastizábal, 2010. "Incremental-like bundle methods with application to energy planning," Computational Optimization and Applications, Springer, vol. 46(2), pages 305-332, June.
    12. Xiaoliang Wang & Liping Pang & Qi Wu & Mingkun Zhang, 2021. "An Adaptive Proximal Bundle Method with Inexact Oracles for a Class of Nonconvex and Nonsmooth Composite Optimization," Mathematics, MDPI, vol. 9(8), pages 1-27, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eva K. Lee & Richard J. Gallagher & David A. Patterson, 2003. "A Linear Programming Approach to Discriminant Analysis with a Reserved-Judgment Region," INFORMS Journal on Computing, INFORMS, vol. 15(1), pages 23-41, February.
    2. M. V. Solodov, 1997. "Convergence Analysis of Perturbed Feasible Descent Methods," Journal of Optimization Theory and Applications, Springer, vol. 93(2), pages 337-353, May.
    3. Zhengyu Ma & Hong Seo Ryoo, 2021. "Spherical Classification of Data, a New Rule-Based Learning Method," Journal of Classification, Springer;The Classification Society, vol. 38(1), pages 44-71, April.
    4. H. D. Qi, 1999. "On Minimizing and Stationary Sequences of a New Class of Merit Functions for Nonlinear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 102(2), pages 411-431, August.
    5. W. Nick Street, 2005. "Oblique Multicategory Decision Trees Using Nonlinear Programming," INFORMS Journal on Computing, INFORMS, vol. 17(1), pages 25-31, February.
    6. Giovanni Felici & Klaus Truemper, 2002. "A MINSAT Approach for Learning in Logic Domains," INFORMS Journal on Computing, INFORMS, vol. 14(1), pages 20-36, February.
    7. P. S. Bradley & Usama M. Fayyad & O. L. Mangasarian, 1999. "Mathematical Programming for Data Mining: Formulations and Challenges," INFORMS Journal on Computing, INFORMS, vol. 11(3), pages 217-238, August.
    8. Palocsay, Susan W. & Stevens, Scott P. & Brookshire, Robert G. & Sacco, William J. & Copes, Wayne S. & Buckman, Robert F. & Smith, J. Stanley, 1996. "Using neural networks for trauma outcome evaluation," European Journal of Operational Research, Elsevier, vol. 93(2), pages 369-386, September.
    9. Sexton, Randall S. & Dorsey, Robert E. & Johnson, John D., 1999. "Optimization of neural networks: A comparative analysis of the genetic algorithm and simulated annealing," European Journal of Operational Research, Elsevier, vol. 114(3), pages 589-601, May.
    10. Orsenigo, Carlotta & Vercellis, Carlo, 2004. "Discrete support vector decision trees via tabu search," Computational Statistics & Data Analysis, Elsevier, vol. 47(2), pages 311-322, September.
    11. M. V. Solodov, 2003. "On Approximations with Finite Precision in Bundle Methods for Nonsmooth Optimization," Journal of Optimization Theory and Applications, Springer, vol. 119(1), pages 151-165, October.
    12. Thomas, Lyn C., 2000. "A survey of credit and behavioural scoring: forecasting financial risk of lending to consumers," International Journal of Forecasting, Elsevier, vol. 16(2), pages 149-172.
    13. Wenma Jin & Yair Censor & Ming Jiang, 2016. "Bounded perturbation resilience of projected scaled gradient methods," Computational Optimization and Applications, Springer, vol. 63(2), pages 365-392, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:98:y:1998:i:3:d:10.1023_a:1022680114518. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.