IDEAS home Printed from https://ideas.repec.org/a/spr/jclass/v38y2021i1d10.1007_s00357-019-09355-z.html
   My bibliography  Save this article

Spherical Classification of Data, a New Rule-Based Learning Method

Author

Listed:
  • Zhengyu Ma

    (Korea University)

  • Hong Seo Ryoo

    (Korea University)

Abstract

This paper presents a new rule-based classification method that partitions data under analysis into spherical patterns. The forte of the method is twofold. One, it exploits the efficiency of distance metric-based clustering to fast collect similar data into spherical patterns. The other, spherical patterns are each a trait shared among one type of data only, hence are built for classification of new data. Numerical studies with public machine learning datasets from Lichman (2013), in comparison with well-established classification methods from Boros et al. (IEEE Transactions on Knowledge and Data Engineering, 12, 292–306, 2000) and Waikato Environment for Knowledge Analysis ( http://www.cs.waikato.ac.nz/ml/weka/ ), demonstrate the aforementioned utilities of the new method well.

Suggested Citation

  • Zhengyu Ma & Hong Seo Ryoo, 2021. "Spherical Classification of Data, a New Rule-Based Learning Method," Journal of Classification, Springer;The Classification Society, vol. 38(1), pages 44-71, April.
  • Handle: RePEc:spr:jclass:v:38:y:2021:i:1:d:10.1007_s00357-019-09355-z
    DOI: 10.1007/s00357-019-09355-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00357-019-09355-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00357-019-09355-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lorena, Luiz Antonio N. & Belo Lopes, Fabio, 1994. "A surrogate heuristic for set covering problems," European Journal of Operational Research, Elsevier, vol. 79(1), pages 138-150, November.
    2. O. L. Mangasarian, 1993. "Mathematical Programming in Neural Networks," INFORMS Journal on Computing, INFORMS, vol. 5(4), pages 349-360, November.
    3. Karla L. Hoffman & Manfred Padberg, 1993. "Solving Airline Crew Scheduling Problems by Branch-and-Cut," Management Science, INFORMS, vol. 39(6), pages 657-682, June.
    4. V. Chvatal, 1979. "A Greedy Heuristic for the Set-Covering Problem," Mathematics of Operations Research, INFORMS, vol. 4(3), pages 233-235, August.
    5. O. L. Mangasarian, 1965. "Linear and Nonlinear Separation of Patterns by Linear Programming," Operations Research, INFORMS, vol. 13(3), pages 444-452, June.
    6. Peter Kolesar & Warren E. Walker, 1974. "An Algorithm for the Dynamic Relocation of Fire Companies," Operations Research, INFORMS, vol. 22(2), pages 249-274, April.
    7. Beasley, J. E. & Chu, P. C., 1996. "A genetic algorithm for the set covering problem," European Journal of Operational Research, Elsevier, vol. 94(2), pages 392-404, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. W. Nick Street, 2005. "Oblique Multicategory Decision Trees Using Nonlinear Programming," INFORMS Journal on Computing, INFORMS, vol. 17(1), pages 25-31, February.
    2. P. S. Bradley & Usama M. Fayyad & O. L. Mangasarian, 1999. "Mathematical Programming for Data Mining: Formulations and Challenges," INFORMS Journal on Computing, INFORMS, vol. 11(3), pages 217-238, August.
    3. Maenhout, Broos & Vanhoucke, Mario, 2010. "A hybrid scatter search heuristic for personalized crew rostering in the airline industry," European Journal of Operational Research, Elsevier, vol. 206(1), pages 155-167, October.
    4. Masoud Yaghini & Mohammad Karimi & Mohadeseh Rahbar, 2015. "A set covering approach for multi-depot train driver scheduling," Journal of Combinatorial Optimization, Springer, vol. 29(3), pages 636-654, April.
    5. Seona Lee & Sang-Ho Lee & HyungJune Lee, 2020. "Timely directional data delivery to multiple destinations through relay population control in vehicular ad hoc network," International Journal of Distributed Sensor Networks, , vol. 16(5), pages 15501477209, May.
    6. Patrizia Beraldi & Andrzej Ruszczyński, 2002. "The Probabilistic Set-Covering Problem," Operations Research, INFORMS, vol. 50(6), pages 956-967, December.
    7. Wang, Yiyuan & Pan, Shiwei & Al-Shihabi, Sameh & Zhou, Junping & Yang, Nan & Yin, Minghao, 2021. "An improved configuration checking-based algorithm for the unicost set covering problem," European Journal of Operational Research, Elsevier, vol. 294(2), pages 476-491.
    8. Cochran, Jeffery K. & Marquez Uribe, Alberto, 2005. "A set covering formulation for agile capacity planning within supply chains," International Journal of Production Economics, Elsevier, vol. 95(2), pages 139-149, February.
    9. Abdullah Alshehri & Mahmoud Owais & Jayadev Gyani & Mishal H. Aljarbou & Saleh Alsulamy, 2023. "Residual Neural Networks for Origin–Destination Trip Matrix Estimation from Traffic Sensor Information," Sustainability, MDPI, vol. 15(13), pages 1-21, June.
    10. Victor Reyes & Ignacio Araya, 2021. "A GRASP-based scheme for the set covering problem," Operational Research, Springer, vol. 21(4), pages 2391-2408, December.
    11. Owais, Mahmoud & Moussa, Ghada S. & Hussain, Khaled F., 2019. "Sensor location model for O/D estimation: Multi-criteria meta-heuristics approach," Operations Research Perspectives, Elsevier, vol. 6(C).
    12. Vazifeh, Mohammad M. & Zhang, Hongmou & Santi, Paolo & Ratti, Carlo, 2019. "Optimizing the deployment of electric vehicle charging stations using pervasive mobility data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 75-91.
    13. M. V. Solodov, 1997. "Convergence Analysis of Perturbed Feasible Descent Methods," Journal of Optimization Theory and Applications, Springer, vol. 93(2), pages 337-353, May.
    14. M. V. Solodov & S. K. Zavriev, 1998. "Error Stability Properties of Generalized Gradient-Type Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 98(3), pages 663-680, September.
    15. H. D. Qi, 1999. "On Minimizing and Stationary Sequences of a New Class of Merit Functions for Nonlinear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 102(2), pages 411-431, August.
    16. Giovanni Felici & Klaus Truemper, 2002. "A MINSAT Approach for Learning in Logic Domains," INFORMS Journal on Computing, INFORMS, vol. 14(1), pages 20-36, February.
    17. Lan, Guanghui & DePuy, Gail W. & Whitehouse, Gary E., 2007. "An effective and simple heuristic for the set covering problem," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1387-1403, February.
    18. Orsenigo, Carlotta & Vercellis, Carlo, 2004. "Discrete support vector decision trees via tabu search," Computational Statistics & Data Analysis, Elsevier, vol. 47(2), pages 311-322, September.
    19. Eva K. Lee & Richard J. Gallagher & David A. Patterson, 2003. "A Linear Programming Approach to Discriminant Analysis with a Reserved-Judgment Region," INFORMS Journal on Computing, INFORMS, vol. 15(1), pages 23-41, February.
    20. Thomas, Lyn C., 2000. "A survey of credit and behavioural scoring: forecasting financial risk of lending to consumers," International Journal of Forecasting, Elsevier, vol. 16(2), pages 149-172.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jclass:v:38:y:2021:i:1:d:10.1007_s00357-019-09355-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.