IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v114y1999i3p589-601.html
   My bibliography  Save this article

Optimization of neural networks: A comparative analysis of the genetic algorithm and simulated annealing

Author

Listed:
  • Sexton, Randall S.
  • Dorsey, Robert E.
  • Johnson, John D.

Abstract

No abstract is available for this item.

Suggested Citation

  • Sexton, Randall S. & Dorsey, Robert E. & Johnson, John D., 1999. "Optimization of neural networks: A comparative analysis of the genetic algorithm and simulated annealing," European Journal of Operational Research, Elsevier, vol. 114(3), pages 589-601, May.
  • Handle: RePEc:eee:ejores:v:114:y:1999:i:3:p:589-601
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(98)00114-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sexton, Randall S. & Alidaee, Bahram & Dorsey, Robert E. & Johnson, John D., 1998. "Global optimization for artificial neural networks: A tabu search application," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 570-584, April.
    2. Goffe, William L. & Ferrier, Gary D. & Rogers, John, 1994. "Global optimization of statistical functions with simulated annealing," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 65-99.
    3. O. L. Mangasarian, 1993. "Mathematical Programming in Neural Networks," INFORMS Journal on Computing, INFORMS, vol. 5(4), pages 349-360, November.
    4. Shouhong Wang, 1995. "The Unpredictability of Standard Back Propagation Neural Networks in Classification Applications," Management Science, INFORMS, vol. 41(3), pages 555-559, March.
    5. Olvi L. Mangasarian & W. Nick Street & William H. Wolberg, 1995. "Breast Cancer Diagnosis and Prognosis Via Linear Programming," Operations Research, INFORMS, vol. 43(4), pages 570-577, August.
    6. Dorsey, Robert E & Mayer, Walter J, 1995. "Genetic Algorithms for Estimation Problems with Multiple Optima, Nondifferentiability, and Other Irregular Features," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 53-66, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Harish Kumar Ghritlahre & Purvi Chandrakar & Ashfaque Ahmad, 2021. "A Comprehensive Review on Performance Prediction of Solar Air Heaters Using Artificial Neural Network," Annals of Data Science, Springer, vol. 8(3), pages 405-449, September.
    2. Laura Palagi, 2019. "Global optimization issues in deep network regression: an overview," Journal of Global Optimization, Springer, vol. 73(2), pages 239-277, February.
    3. Laura Palagi, 2017. "Global Optimization issues in Supervised Learning. An overview," DIAG Technical Reports 2017-11, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    4. Wen, Ue-Pyng & Lan, Kuen-Ming & Shih, Hsu-Shih, 2009. "A review of Hopfield neural networks for solving mathematical programming problems," European Journal of Operational Research, Elsevier, vol. 198(3), pages 675-687, November.
    5. Mak, Brenda & Blanning, Robert & Ho, Susanna, 2006. "Genetic algorithms in logic tree decision modeling," European Journal of Operational Research, Elsevier, vol. 170(2), pages 597-612, April.
    6. Ashwini Pradhan & Debahuti Mishra & Kaberi Das & Ganapati Panda & Sachin Kumar & Mikhail Zymbler, 2021. "On the Classification of MR Images Using “ELM-SSA” Coated Hybrid Model," Mathematics, MDPI, vol. 9(17), pages 1-21, August.
    7. Asaju La’aro Bolaji & Aminu Ali Ahmad & Peter Bamidele Shola, 2018. "Training of neural network for pattern classification using fireworks algorithm," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(1), pages 208-215, February.
    8. Rä‚Zvan Popa, 2020. "Improving Earnings Predictions With Neural Network Models," Review of Economic and Business Studies, Alexandru Ioan Cuza University, Faculty of Economics and Business Administration, issue 26, pages 77-96, December.
    9. Ruslan Abdulkadirov & Pavel Lyakhov & Nikolay Nagornov, 2023. "Survey of Optimization Algorithms in Modern Neural Networks," Mathematics, MDPI, vol. 11(11), pages 1-37, May.
    10. Geraint Johnes, 2000. "Up Around the Bend: Linear and nonlinear models of the UK economy compared," International Review of Applied Economics, Taylor & Francis Journals, vol. 14(4), pages 485-493.
    11. Pendharkar, Parag C., 2002. "A computational study on the performance of artificial neural networks under changing structural design and data distribution," European Journal of Operational Research, Elsevier, vol. 138(1), pages 155-177, April.
    12. Emir Malikov & Shunan Zhao & Subal C. Kumbhakar, 2020. "Estimation of firm‐level productivity in the presence of exports: Evidence from China's manufacturing," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(4), pages 457-480, June.
    13. Miriyala, Srinivas Soumitri & Subramanian, Venkat & Mitra, Kishalay, 2018. "TRANSFORM-ANN for online optimization of complex industrial processes: Casting process as case study," European Journal of Operational Research, Elsevier, vol. 264(1), pages 294-309.
    14. M. Milenković & N. Milosavljevic & N. Bojović & S. Val, 2021. "Container flow forecasting through neural networks based on metaheuristics," Operational Research, Springer, vol. 21(2), pages 965-997, June.
    15. Joo, Rocío & Bertrand, Sophie & Chaigneau, Alexis & Ñiquen, Miguel, 2011. "Optimization of an artificial neural network for identifying fishing set positions from VMS data: An example from the Peruvian anchovy purse seine fishery," Ecological Modelling, Elsevier, vol. 222(4), pages 1048-1059.
    16. Pendharkar, Parag C., 2001. "An empirical study of design and testing of hybrid evolutionary-neural approach for classification," Omega, Elsevier, vol. 29(4), pages 361-374, August.
    17. Gupta, Jatinder N. D. & Sexton, Randall S., 1999. "Comparing backpropagation with a genetic algorithm for neural network training," Omega, Elsevier, vol. 27(6), pages 679-684, December.
    18. B Dengiz & C Alabas-Uslu & O Dengiz, 2009. "A tabu search algorithm for the training of neural networks," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(2), pages 282-291, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Bierlaire & M. Thémans & N. Zufferey, 2010. "A Heuristic for Nonlinear Global Optimization," INFORMS Journal on Computing, INFORMS, vol. 22(1), pages 59-70, February.
    2. Mika Meitz & Daniel Preve & Pentti Saikkonen, 2023. "A mixture autoregressive model based on Student’s t–distribution," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 52(2), pages 499-515, January.
    3. Sexton, Randall S. & Alidaee, Bahram & Dorsey, Robert E. & Johnson, John D., 1998. "Global optimization for artificial neural networks: A tabu search application," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 570-584, April.
    4. Tucci, Marco P., 2002. "A note on global optimization in adaptive control, econometrics and macroeconomics," Journal of Economic Dynamics and Control, Elsevier, vol. 26(9-10), pages 1739-1764, August.
    5. Kapetanios, George, 2006. "Cluster analysis of panel data sets using non-standard optimisation of information criteria," Journal of Economic Dynamics and Control, Elsevier, vol. 30(8), pages 1389-1408, August.
    6. Kapetanios, George, 2007. "Variable selection in regression models using nonstandard optimisation of information criteria," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 4-15, September.
    7. William L. Goffe, "undated". "A Toolkit for Optimizing Functions in Economics," Computing in Economics and Finance 1997 65, Society for Computational Economics.
    8. Manfred GILLI & Peter WINKER, 2008. "A review of heuristic optimization methods in econometrics," Swiss Finance Institute Research Paper Series 08-12, Swiss Finance Institute.
    9. Giovanni Felici & Klaus Truemper, 2002. "A MINSAT Approach for Learning in Logic Domains," INFORMS Journal on Computing, INFORMS, vol. 14(1), pages 20-36, February.
    10. Antanas Žilinskas & Julius Žilinskas, 2013. "A hybrid global optimization algorithm for non-linear least squares regression," Journal of Global Optimization, Springer, vol. 56(2), pages 265-277, June.
    11. Max Jerrell, 2000. "Applications Of Public Global Optimization Software To Difficult Econometric Functions," Computing in Economics and Finance 2000 161, Society for Computational Economics.
    12. Christopher R. Knittel & Konstantinos Metaxoglou, 2008. "Estimation of Random Coefficient Demand Models: Challenges, Difficulties and Warnings," NBER Working Papers 14080, National Bureau of Economic Research, Inc.
    13. Winker, Peter & Gilli, Manfred, 2004. "Applications of optimization heuristics to estimation and modelling problems," Computational Statistics & Data Analysis, Elsevier, vol. 47(2), pages 211-223, September.
    14. Sexton, Randall S. & McMurtrey, Shannon & Cleavenger, Dean, 2006. "Knowledge discovery using a neural network simultaneous optimization algorithm on a real world classification problem," European Journal of Operational Research, Elsevier, vol. 168(3), pages 1009-1018, February.
    15. Eva K. Lee & Richard J. Gallagher & David A. Patterson, 2003. "A Linear Programming Approach to Discriminant Analysis with a Reserved-Judgment Region," INFORMS Journal on Computing, INFORMS, vol. 15(1), pages 23-41, February.
    16. Randall S. Sexton & Naheel A. Sikander, 2001. "Data mining using a genetic algorithm‐trained neural network," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 10(4), pages 201-210, December.
    17. P. S. Bradley & Usama M. Fayyad & O. L. Mangasarian, 1999. "Mathematical Programming for Data Mining: Formulations and Challenges," INFORMS Journal on Computing, INFORMS, vol. 11(3), pages 217-238, August.
    18. Thomas Baudin & Robert Stelter, 2022. "The rural exodus and the rise of Europe," Journal of Economic Growth, Springer, vol. 27(3), pages 365-414, September.
    19. Luca Benati & Paolo Surico, 2009. "VAR Analysis and the Great Moderation," American Economic Review, American Economic Association, vol. 99(4), pages 1636-1652, September.
    20. Palocsay, Susan W. & Stevens, Scott P. & Brookshire, Robert G. & Sacco, William J. & Copes, Wayne S. & Buckman, Robert F. & Smith, J. Stanley, 1996. "Using neural networks for trauma outcome evaluation," European Journal of Operational Research, Elsevier, vol. 93(2), pages 369-386, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:114:y:1999:i:3:p:589-601. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.