IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v390y2021ics0096300320305580.html
   My bibliography  Save this article

Lα Riemannian weighted centers of mass applied to compose an image filter to diffusion tensor imaging

Author

Listed:
  • da Silva Alves, Charlan Dellon
  • Oliveira, Paulo Roberto
  • Gregório, Ronaldo Malheiros

Abstract

This paper presents an edge preserving and tensor filtering method for diffusion tensor image. The main idea consists in using the Lα Riemannian centers of mass attached to the edge information estimated in the domain of the diffusion tensor so that the image edges not been smoothed in the filtering process. For α ∈ [1, 2], the method encompasses both the standard case of the Riemannian weighted mean filter (α=2) and the Riemannian weighted median filter (α=1) in only one filter. Aiming to establish the fundamentals for the well-posedness of the proposed filter, called adaptive Riemannian filter (ARF), we claimed a theoretical result previously stated in the literature on the continuity of the Lα Riemannian centers of mass, with respect to the parameter α and the points in the neighborhood of the filtered tensor.

Suggested Citation

  • da Silva Alves, Charlan Dellon & Oliveira, Paulo Roberto & Gregório, Ronaldo Malheiros, 2021. "Lα Riemannian weighted centers of mass applied to compose an image filter to diffusion tensor imaging," Applied Mathematics and Computation, Elsevier, vol. 390(C).
  • Handle: RePEc:eee:apmaco:v:390:y:2021:i:c:s0096300320305580
    DOI: 10.1016/j.amc.2020.125603
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320305580
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125603?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gregório, R.M. & Oliveira, P.R. & Alves, C.D.S., 2019. "A two-phase-like proximal point algorithm in domains of positivity," Applied Mathematics and Computation, Elsevier, vol. 343(C), pages 67-89.
    2. O. P. Ferreira & P. R. Oliveira, 1998. "Subgradient Algorithm on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 97(1), pages 93-104, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. João Carlos de O. Souza, 2018. "Proximal Point Methods for Lipschitz Functions on Hadamard Manifolds: Scalar and Vectorial Cases," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 745-760, December.
    2. J. X. Cruz Neto & F. M. O. Jacinto & P. A. Soares & J. C. O. Souza, 2018. "On maximal monotonicity of bifunctions on Hadamard manifolds," Journal of Global Optimization, Springer, vol. 72(3), pages 591-601, November.
    3. Glaydston C. Bento & Orizon P. Ferreira & Jefferson G. Melo, 2017. "Iteration-Complexity of Gradient, Subgradient and Proximal Point Methods on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 173(2), pages 548-562, May.
    4. Peng Zhang & Gejun Bao, 2018. "An Incremental Subgradient Method on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 176(3), pages 711-727, March.
    5. Lei Wang & Xin Liu & Yin Zhang, 2023. "A communication-efficient and privacy-aware distributed algorithm for sparse PCA," Computational Optimization and Applications, Springer, vol. 85(3), pages 1033-1072, July.
    6. X. M. Wang & C. Li & J. C. Yao, 2015. "Subgradient Projection Algorithms for Convex Feasibility on Riemannian Manifolds with Lower Bounded Curvatures," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 202-217, January.
    7. Glaydston C. Bento & Jefferson G. Melo, 2012. "Subgradient Method for Convex Feasibility on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 152(3), pages 773-785, March.
    8. Guo-ji Tang & Nan-jing Huang, 2012. "Korpelevich’s method for variational inequality problems on Hadamard manifolds," Journal of Global Optimization, Springer, vol. 54(3), pages 493-509, November.
    9. E. A. Papa Quiroz & P. R. Oliveira, 2007. "New Self-Concordant Barrier for the Hypercube," Journal of Optimization Theory and Applications, Springer, vol. 135(3), pages 475-490, December.
    10. G. C. Bento & J. X. Cruz Neto, 2013. "A Subgradient Method for Multiobjective Optimization on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 159(1), pages 125-137, October.
    11. João Xavier da Cruz Neto & Ítalo Dowell Lira Melo & Paulo Alexandre Araújo Sousa, 2017. "Convexity and Some Geometric Properties," Journal of Optimization Theory and Applications, Springer, vol. 173(2), pages 459-470, May.
    12. O. Ferreira & A. Iusem & S. Németh, 2014. "Concepts and techniques of optimization on the sphere," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 1148-1170, October.
    13. Gregório, R.M. & Oliveira, P.R. & Alves, C.D.S., 2019. "A two-phase-like proximal point algorithm in domains of positivity," Applied Mathematics and Computation, Elsevier, vol. 343(C), pages 67-89.
    14. J. Souza & P. Oliveira, 2015. "A proximal point algorithm for DC fuctions on Hadamard manifolds," Journal of Global Optimization, Springer, vol. 63(4), pages 797-810, December.
    15. Qinsi Wang & Wei Hong Yang, 2024. "An adaptive regularized proximal Newton-type methods for composite optimization over the Stiefel manifold," Computational Optimization and Applications, Springer, vol. 89(2), pages 419-457, November.
    16. Dewei Zhang & Sam Davanloo Tajbakhsh, 2023. "Riemannian Stochastic Variance-Reduced Cubic Regularized Newton Method for Submanifold Optimization," Journal of Optimization Theory and Applications, Springer, vol. 196(1), pages 324-361, January.
    17. Xiao-bo Li & Li-wen Zhou & Nan-jing Huang, 2016. "Gap Functions and Global Error Bounds for Generalized Mixed Variational Inequalities on Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 168(3), pages 830-849, March.
    18. G. C. Bento & O. P. Ferreira & P. R. Oliveira, 2012. "Unconstrained Steepest Descent Method for Multicriteria Optimization on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 154(1), pages 88-107, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:390:y:2021:i:c:s0096300320305580. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.