IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v203y2024i1d10.1007_s10957-024-02519-x.html
   My bibliography  Save this article

Worst Case Complexity Bounds for Linesearch-Type Derivative-Free Algorithms

Author

Listed:
  • Andrea Brilli

    (Sapienza University of Rome)

  • Morteza Kimiaei

    (Universität Wien)

  • Giampaolo Liuzzi

    (Sapienza University of Rome)

  • Stefano Lucidi

    (Sapienza University of Rome)

Abstract

This paper is devoted to the analysis of worst case complexity bounds for linesearch-type derivative-free algorithms for the minimization of general non-convex smooth functions. We consider a derivative-free algorithm based on a linesearch extrapolation technique. First we prove that it enjoys the same complexity properties which have been proved for pattern and direct search algorithms, namely that the number of iterations and of function evaluations required to drive the norm of the gradient of the objective function below a given threshold $$\epsilon $$ ϵ for the first time is $${{\mathcal {O}}}(\epsilon ^{-2})$$ O ( ϵ - 2 ) in the worst case. This is the first contribution proving worst-case complexity properties for derivative-free linesearch-type algorithms. Then we show that the lineasearch approach used by the described algorithm allows us to guarantee the further property that the number of iterations such that the norm of the gradient is bigger than $$\epsilon $$ ϵ is $$\mathcal{O}(\epsilon ^{-2})$$ O ( ϵ - 2 ) in the worst case.

Suggested Citation

  • Andrea Brilli & Morteza Kimiaei & Giampaolo Liuzzi & Stefano Lucidi, 2024. "Worst Case Complexity Bounds for Linesearch-Type Derivative-Free Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 203(1), pages 419-454, October.
  • Handle: RePEc:spr:joptap:v:203:y:2024:i:1:d:10.1007_s10957-024-02519-x
    DOI: 10.1007/s10957-024-02519-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-024-02519-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-024-02519-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fuchang Gao & Lixing Han, 2012. "Implementing the Nelder-Mead simplex algorithm with adaptive parameters," Computational Optimization and Applications, Springer, vol. 51(1), pages 259-277, January.
    2. Charles Audet & Kwassi Joseph Dzahini & Michael Kokkolaras & Sébastien Le Digabel, 2021. "Stochastic mesh adaptive direct search for blackbox optimization using probabilistic estimates," Computational Optimization and Applications, Springer, vol. 79(1), pages 1-34, May.
    3. V. S. Amaral & R. Andreani & E. G. Birgin & D. S. Marcondes & J. M. Martínez, 2022. "On complexity and convergence of high-order coordinate descent algorithms for smooth nonconvex box-constrained minimization," Journal of Global Optimization, Springer, vol. 84(3), pages 527-561, November.
    4. Jeffrey Larson & Stephen C. Billups, 2016. "Stochastic derivative-free optimization using a trust region framework," Computational Optimization and Applications, Springer, vol. 64(3), pages 619-645, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kwassi Joseph Dzahini, 2022. "Expected complexity analysis of stochastic direct-search," Computational Optimization and Applications, Springer, vol. 81(1), pages 179-200, January.
    2. V. Kungurtsev & F. Rinaldi, 2021. "A zeroth order method for stochastic weakly convex optimization," Computational Optimization and Applications, Springer, vol. 80(3), pages 731-753, December.
    3. Riva-Palacio, Alan & Leisen, Fabrizio, 2021. "Compound vectors of subordinators and their associated positive Lévy copulas," Journal of Multivariate Analysis, Elsevier, vol. 183(C).
    4. Qi Fan & Jiaqiao Hu, 2018. "Surrogate-Based Promising Area Search for Lipschitz Continuous Simulation Optimization," INFORMS Journal on Computing, INFORMS, vol. 30(4), pages 677-693, November.
    5. Ivan Jericevich & Patrick Chang & Tim Gebbie, 2021. "Simulation and estimation of an agent-based market-model with a matching engine," Papers 2108.07806, arXiv.org, revised Aug 2021.
    6. Rocha Filho, T.M. & Moret, M.A. & Chow, C.C. & Phillips, J.C. & Cordeiro, A.J.A. & Scorza, F.A. & Almeida, A.-C.G. & Mendes, J.F.F., 2021. "A data-driven model for COVID-19 pandemic – Evolution of the attack rate and prognosis for Brazil," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    7. Charles Audet & Kwassi Joseph Dzahini & Michael Kokkolaras & Sébastien Le Digabel, 2021. "Stochastic mesh adaptive direct search for blackbox optimization using probabilistic estimates," Computational Optimization and Applications, Springer, vol. 79(1), pages 1-34, May.
    8. Kota Matsui & Wataru Kumagai & Takafumi Kanamori, 2017. "Parallel distributed block coordinate descent methods based on pairwise comparison oracle," Journal of Global Optimization, Springer, vol. 69(1), pages 1-21, September.
    9. Chang, Kuo-Hao, 2015. "A direct search method for unconstrained quantile-based simulation optimization," European Journal of Operational Research, Elsevier, vol. 246(2), pages 487-495.
    10. Ronan Keane & H. Oliver Gao, 2021. "Fast Calibration of Car-Following Models to Trajectory Data Using the Adjoint Method," Transportation Science, INFORMS, vol. 55(3), pages 592-615, May.
    11. Youssef Diouane & Victor Picheny & Rodolophe Le Riche & Alexandre Scotto Di Perrotolo, 2023. "TREGO: a trust-region framework for efficient global optimization," Journal of Global Optimization, Springer, vol. 86(1), pages 1-23, May.
    12. Michele Mininni & Giuseppe Orlando & Giovanni Taglialatela, 2021. "Challenges in approximating the Black and Scholes call formula with hyperbolic tangents," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(1), pages 73-100, June.
    13. Ralf Biehl, 2019. "Jscatter, a program for evaluation and analysis of experimental data," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-18, June.
    14. Fengqiao Luo & Jeffrey Larson, 2024. "An Empirical Quantile Estimation Approach for Chance-Constrained Nonlinear Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 203(1), pages 767-809, October.
    15. Mejía-de-Dios, Jesús-Adolfo & Mezura-Montes, Efrén & Toledo-Hernández, Porfirio, 2022. "Pseudo-feasible solutions in evolutionary bilevel optimization: Test problems and performance assessment," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    16. Serge Gratton & Valentin Mercier & Elisa Riccietti & Philippe L. Toint, 2024. "A block-coordinate approach of multi-level optimization with an application to physics-informed neural networks," Computational Optimization and Applications, Springer, vol. 89(2), pages 385-417, November.
    17. Papo, David & Righetti, Marco & Fadiga, Luciano & Biscarini, Fabio & Zanin, Massimiliano, 2020. "A minimal model of hospital patients’ dynamics in COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    18. Pinto, Roberto, 2016. "Stock rationing under a profit satisficing objective," Omega, Elsevier, vol. 65(C), pages 55-68.
    19. Ingrida Steponavičė & Rob J. Hyndman & Kate Smith-Miles & Laura Villanova, 2017. "Dynamic algorithm selection for pareto optimal set approximation," Journal of Global Optimization, Springer, vol. 67(1), pages 263-282, January.
    20. Ferreiro, Ana M. & García-Rodríguez, José Antonio & Vázquez, Carlos & e Silva, E. Costa & Correia, A., 2019. "Parallel two-phase methods for global optimization on GPU," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 156(C), pages 67-90.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:203:y:2024:i:1:d:10.1007_s10957-024-02519-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.