IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v81y2022i1d10.1007_s10589-021-00329-9.html
   My bibliography  Save this article

Expected complexity analysis of stochastic direct-search

Author

Listed:
  • Kwassi Joseph Dzahini

    (Polytechnique Montréal)

Abstract

This work presents the convergence rate analysis of stochastic variants of the broad class of direct-search methods of directional type. It introduces an algorithm designed to optimize differentiable objective functions f whose values can only be computed through a stochastically noisy blackbox. The proposed stochastic directional direct-search (SDDS) algorithm accepts new iterates by imposing a sufficient decrease condition on so called probabilistic estimates of the corresponding unavailable objective function values. The accuracy of such estimates is required to hold with a sufficiently large but fixed probability $$\beta$$ β . The analysis of this method utilizes an existing supermartingale-based framework proposed for the convergence rates analysis of stochastic optimization methods that use adaptive step sizes. It aims to show that the expected number of iterations required to drive the norm of the gradient of f below a given threshold $$\epsilon$$ ϵ is bounded in $${\mathcal {O}}\left( \epsilon ^{\frac{-p}{\min (p-1,1)}}/(2\beta -1)\right)$$ O ϵ - p min ( p - 1 , 1 ) / ( 2 β - 1 ) with $$p>1$$ p > 1 . Unlike prior analysis using the same aforementioned framework such as those of stochastic trust-region methods and stochastic line search methods, SDDS does not use any gradient information to find descent directions. However, its convergence rate is similar to those of both latter methods with a dependence on $$\epsilon$$ ϵ that also matches that of the broad class of deterministic directional direct-search methods which accept new iterates by imposing a sufficient decrease condition.

Suggested Citation

  • Kwassi Joseph Dzahini, 2022. "Expected complexity analysis of stochastic direct-search," Computational Optimization and Applications, Springer, vol. 81(1), pages 179-200, January.
  • Handle: RePEc:spr:coopap:v:81:y:2022:i:1:d:10.1007_s10589-021-00329-9
    DOI: 10.1007/s10589-021-00329-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-021-00329-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-021-00329-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Charles Audet & Kwassi Joseph Dzahini & Michael Kokkolaras & Sébastien Le Digabel, 2021. "Stochastic mesh adaptive direct search for blackbox optimization using probabilistic estimates," Computational Optimization and Applications, Springer, vol. 79(1), pages 1-34, May.
    2. Jeffrey Larson & Stephen C. Billups, 2016. "Stochastic derivative-free optimization using a trust region framework," Computational Optimization and Applications, Springer, vol. 64(3), pages 619-645, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Brilli & Morteza Kimiaei & Giampaolo Liuzzi & Stefano Lucidi, 2024. "Worst Case Complexity Bounds for Linesearch-Type Derivative-Free Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 203(1), pages 419-454, October.
    2. V. Kungurtsev & F. Rinaldi, 2021. "A zeroth order method for stochastic weakly convex optimization," Computational Optimization and Applications, Springer, vol. 80(3), pages 731-753, December.
    3. Qi Fan & Jiaqiao Hu, 2018. "Surrogate-Based Promising Area Search for Lipschitz Continuous Simulation Optimization," INFORMS Journal on Computing, INFORMS, vol. 30(4), pages 677-693, November.
    4. Charles Audet & Kwassi Joseph Dzahini & Michael Kokkolaras & Sébastien Le Digabel, 2021. "Stochastic mesh adaptive direct search for blackbox optimization using probabilistic estimates," Computational Optimization and Applications, Springer, vol. 79(1), pages 1-34, May.
    5. Youssef Diouane & Victor Picheny & Rodolophe Le Riche & Alexandre Scotto Di Perrotolo, 2023. "TREGO: a trust-region framework for efficient global optimization," Journal of Global Optimization, Springer, vol. 86(1), pages 1-23, May.
    6. Fengqiao Luo & Jeffrey Larson, 2024. "An Empirical Quantile Estimation Approach for Chance-Constrained Nonlinear Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 203(1), pages 767-809, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:81:y:2022:i:1:d:10.1007_s10589-021-00329-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.