Modified Memoryless Spectral-Scaling Broyden Family on Riemannian Manifolds
Author
Abstract
Suggested Citation
DOI: 10.1007/s10957-024-02449-8
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- David F. Shanno, 1978. "Conjugate Gradient Methods with Inexact Searches," Mathematics of Operations Research, INFORMS, vol. 3(3), pages 244-256, August.
- Hiroyuki Sakai & Hideaki Iiduka, 2020. "Hybrid Riemannian conjugate gradient methods with global convergence properties," Computational Optimization and Applications, Springer, vol. 77(3), pages 811-830, December.
- Hiroyuki Sato, 2016. "A Dai–Yuan-type Riemannian conjugate gradient method with the weak Wolfe conditions," Computational Optimization and Applications, Springer, vol. 64(1), pages 101-118, May.
- Xiaojing Zhu & Hiroyuki Sato, 2020. "Riemannian conjugate gradient methods with inverse retraction," Computational Optimization and Applications, Springer, vol. 77(3), pages 779-810, December.
- Sakai, Hiroyuki & Sato, Hiroyuki & Iiduka, Hideaki, 2023. "Global convergence of Hager–Zhang type Riemannian conjugate gradient method," Applied Mathematics and Computation, Elsevier, vol. 441(C).
- W. Y. Cheng & D. H. Li, 2010. "Spectral Scaling BFGS Method," Journal of Optimization Theory and Applications, Springer, vol. 146(2), pages 305-319, August.
- Hiroyuki Sakai & Hideaki Iiduka, 2021. "Sufficient Descent Riemannian Conjugate Gradient Methods," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 130-150, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yasushi Narushima & Shummin Nakayama & Masashi Takemura & Hiroshi Yabe, 2023. "Memoryless Quasi-Newton Methods Based on the Spectral-Scaling Broyden Family for Riemannian Optimization," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 639-664, May.
- Hiroyuki Sato, 2023. "Riemannian optimization on unit sphere with p-norm and its applications," Computational Optimization and Applications, Springer, vol. 85(3), pages 897-935, July.
- Sakai, Hiroyuki & Sato, Hiroyuki & Iiduka, Hideaki, 2023. "Global convergence of Hager–Zhang type Riemannian conjugate gradient method," Applied Mathematics and Computation, Elsevier, vol. 441(C).
- Hiroyuki Sakai & Hideaki Iiduka, 2021. "Sufficient Descent Riemannian Conjugate Gradient Methods," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 130-150, July.
- Shummin Nakayama & Yasushi Narushima & Hiroshi Yabe, 2021. "Inexact proximal memoryless quasi-Newton methods based on the Broyden family for minimizing composite functions," Computational Optimization and Applications, Springer, vol. 79(1), pages 127-154, May.
- Brennan McCann & Morad Nazari & Christopher Petersen, 2024. "Numerical Approaches for Constrained and Unconstrained, Static Optimization on the Special Euclidean Group SE(3)," Journal of Optimization Theory and Applications, Springer, vol. 201(3), pages 1116-1150, June.
- Hiroyuki Sakai & Hideaki Iiduka, 2020. "Hybrid Riemannian conjugate gradient methods with global convergence properties," Computational Optimization and Applications, Springer, vol. 77(3), pages 811-830, December.
- Xiaojing Zhu & Hiroyuki Sato, 2020. "Riemannian conjugate gradient methods with inverse retraction," Computational Optimization and Applications, Springer, vol. 77(3), pages 779-810, December.
- Fischer, Manfred M. & Staufer, Petra, 1998. "Optimization in an Error Backpropagation Neural Network Environment with a Performance Test on a Pattern Classification Problem," MPRA Paper 77810, University Library of Munich, Germany.
- Ke-Lin Du & Chi-Sing Leung & Wai Ho Mow & M. N. S. Swamy, 2022. "Perceptron: Learning, Generalization, Model Selection, Fault Tolerance, and Role in the Deep Learning Era," Mathematics, MDPI, vol. 10(24), pages 1-46, December.
- N. Mahdavi-Amiri & M. Shaeiri, 2020. "A conjugate gradient sampling method for nonsmooth optimization," 4OR, Springer, vol. 18(1), pages 73-90, March.
- Andrei, Neculai, 2010. "Accelerated scaled memoryless BFGS preconditioned conjugate gradient algorithm for unconstrained optimization," European Journal of Operational Research, Elsevier, vol. 204(3), pages 410-420, August.
- Hanif D. Sherali & Churlzu Lim, 2007. "Enhancing Lagrangian Dual Optimization for Linear Programs by Obviating Nondifferentiability," INFORMS Journal on Computing, INFORMS, vol. 19(1), pages 3-13, February.
- Fatemeh Dargahi & Saman Babaie-Kafaki & Zohre Aminifard, 2024. "Eigenvalue Analyses on the Memoryless Davidon–Fletcher–Powell Method Based on a Spectral Secant Equation," Journal of Optimization Theory and Applications, Springer, vol. 200(1), pages 394-403, January.
- Xiaojing Zhu, 2017. "A Riemannian conjugate gradient method for optimization on the Stiefel manifold," Computational Optimization and Applications, Springer, vol. 67(1), pages 73-110, May.
- Neculai Andrei, 2018. "A Double-Parameter Scaling Broyden–Fletcher–Goldfarb–Shanno Method Based on Minimizing the Measure Function of Byrd and Nocedal for Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 178(1), pages 191-218, July.
- Chi-Cheong Chris Wong & Man-Chung Chan & Chi-Chung Lam, 2000. "Financial Time Series Forecasting By Neural Network Using Conjugate Gradient Learning Algorithm And Multiple Linear Regression Weight Initialization," Computing in Economics and Finance 2000 61, Society for Computational Economics.
- Saman Babaie-Kafaki, 2012. "A note on the global convergence theorem of the scaled conjugate gradient algorithms proposed by Andrei," Computational Optimization and Applications, Springer, vol. 52(2), pages 409-414, June.
- Churlzu Lim & Hanif Sherali & Stan Uryasev, 2010. "Portfolio optimization by minimizing conditional value-at-risk via nondifferentiable optimization," Computational Optimization and Applications, Springer, vol. 46(3), pages 391-415, July.
- Lei Wang & Xin Liu & Yin Zhang, 2023. "A communication-efficient and privacy-aware distributed algorithm for sparse PCA," Computational Optimization and Applications, Springer, vol. 85(3), pages 1033-1072, July.
More about this item
Keywords
Riemannian optimization; Memoryless quasi-Newton method; Riemannian geometry; Sufficient descent condition;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:202:y:2024:i:2:d:10.1007_s10957-024-02449-8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.