IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v202y2024i2d10.1007_s10957-024-02449-8.html
   My bibliography  Save this article

Modified Memoryless Spectral-Scaling Broyden Family on Riemannian Manifolds

Author

Listed:
  • Hiroyuki Sakai

    (Meiji University)

  • Hideaki Iiduka

    (Meiji University)

Abstract

This paper presents modified memoryless quasi-Newton methods based on the spectral-scaling Broyden family on Riemannian manifolds. The method involves adding one parameter to the search direction of the memoryless self-scaling Broyden family on the manifold. Moreover, it uses a general map instead of vector transport. This idea has already been proposed within a general framework of Riemannian conjugate gradient methods where one can use vector transport, scaled vector transport, or an inverse retraction. We show that the search direction satisfies the sufficient descent condition under some assumptions on the parameters. In addition, we show global convergence of the proposed method under the Wolfe conditions. We numerically compare it with existing methods, including Riemannian conjugate gradient methods and the memoryless spectral-scaling Broyden family. The numerical results indicate that the proposed method with the BFGS formula is suitable for solving an off-diagonal cost function minimization problem on an oblique manifold.

Suggested Citation

  • Hiroyuki Sakai & Hideaki Iiduka, 2024. "Modified Memoryless Spectral-Scaling Broyden Family on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 202(2), pages 834-853, August.
  • Handle: RePEc:spr:joptap:v:202:y:2024:i:2:d:10.1007_s10957-024-02449-8
    DOI: 10.1007/s10957-024-02449-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-024-02449-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-024-02449-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sakai, Hiroyuki & Sato, Hiroyuki & Iiduka, Hideaki, 2023. "Global convergence of Hager–Zhang type Riemannian conjugate gradient method," Applied Mathematics and Computation, Elsevier, vol. 441(C).
    2. W. Y. Cheng & D. H. Li, 2010. "Spectral Scaling BFGS Method," Journal of Optimization Theory and Applications, Springer, vol. 146(2), pages 305-319, August.
    3. David F. Shanno, 1978. "Conjugate Gradient Methods with Inexact Searches," Mathematics of Operations Research, INFORMS, vol. 3(3), pages 244-256, August.
    4. Hiroyuki Sakai & Hideaki Iiduka, 2020. "Hybrid Riemannian conjugate gradient methods with global convergence properties," Computational Optimization and Applications, Springer, vol. 77(3), pages 811-830, December.
    5. Hiroyuki Sato, 2016. "A Dai–Yuan-type Riemannian conjugate gradient method with the weak Wolfe conditions," Computational Optimization and Applications, Springer, vol. 64(1), pages 101-118, May.
    6. Xiaojing Zhu & Hiroyuki Sato, 2020. "Riemannian conjugate gradient methods with inverse retraction," Computational Optimization and Applications, Springer, vol. 77(3), pages 779-810, December.
    7. Hiroyuki Sakai & Hideaki Iiduka, 2021. "Sufficient Descent Riemannian Conjugate Gradient Methods," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 130-150, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yasushi Narushima & Shummin Nakayama & Masashi Takemura & Hiroshi Yabe, 2023. "Memoryless Quasi-Newton Methods Based on the Spectral-Scaling Broyden Family for Riemannian Optimization," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 639-664, May.
    2. Hiroyuki Sato, 2023. "Riemannian optimization on unit sphere with p-norm and its applications," Computational Optimization and Applications, Springer, vol. 85(3), pages 897-935, July.
    3. Sakai, Hiroyuki & Sato, Hiroyuki & Iiduka, Hideaki, 2023. "Global convergence of Hager–Zhang type Riemannian conjugate gradient method," Applied Mathematics and Computation, Elsevier, vol. 441(C).
    4. Hiroyuki Sakai & Hideaki Iiduka, 2021. "Sufficient Descent Riemannian Conjugate Gradient Methods," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 130-150, July.
    5. Shummin Nakayama & Yasushi Narushima & Hiroshi Yabe, 2021. "Inexact proximal memoryless quasi-Newton methods based on the Broyden family for minimizing composite functions," Computational Optimization and Applications, Springer, vol. 79(1), pages 127-154, May.
    6. Brennan McCann & Morad Nazari & Christopher Petersen, 2024. "Numerical Approaches for Constrained and Unconstrained, Static Optimization on the Special Euclidean Group SE(3)," Journal of Optimization Theory and Applications, Springer, vol. 201(3), pages 1116-1150, June.
    7. Hiroyuki Sakai & Hideaki Iiduka, 2020. "Hybrid Riemannian conjugate gradient methods with global convergence properties," Computational Optimization and Applications, Springer, vol. 77(3), pages 811-830, December.
    8. Churlzu Lim & Hanif Sherali & Stan Uryasev, 2010. "Portfolio optimization by minimizing conditional value-at-risk via nondifferentiable optimization," Computational Optimization and Applications, Springer, vol. 46(3), pages 391-415, July.
    9. Lei Wang & Xin Liu & Yin Zhang, 2023. "A communication-efficient and privacy-aware distributed algorithm for sparse PCA," Computational Optimization and Applications, Springer, vol. 85(3), pages 1033-1072, July.
    10. Xiaojing Zhu & Hiroyuki Sato, 2020. "Riemannian conjugate gradient methods with inverse retraction," Computational Optimization and Applications, Springer, vol. 77(3), pages 779-810, December.
    11. Fischer, Manfred M. & Staufer, Petra, 1998. "Optimization in an Error Backpropagation Neural Network Environment with a Performance Test on a Pattern Classification Problem," MPRA Paper 77810, University Library of Munich, Germany.
    12. Yuya Yamakawa & Hiroyuki Sato, 2022. "Sequential optimality conditions for nonlinear optimization on Riemannian manifolds and a globally convergent augmented Lagrangian method," Computational Optimization and Applications, Springer, vol. 81(2), pages 397-421, March.
    13. B. Sellami & Y. Chaib, 2016. "A new family of globally convergent conjugate gradient methods," Annals of Operations Research, Springer, vol. 241(1), pages 497-513, June.
    14. Neculai Andrei, 2013. "Another Conjugate Gradient Algorithm with Guaranteed Descent and Conjugacy Conditions for Large-scale Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 159(1), pages 159-182, October.
    15. Ke-Lin Du & Chi-Sing Leung & Wai Ho Mow & M. N. S. Swamy, 2022. "Perceptron: Learning, Generalization, Model Selection, Fault Tolerance, and Role in the Deep Learning Era," Mathematics, MDPI, vol. 10(24), pages 1-46, December.
    16. N. Mahdavi-Amiri & M. Shaeiri, 2020. "A conjugate gradient sampling method for nonsmooth optimization," 4OR, Springer, vol. 18(1), pages 73-90, March.
    17. Abubakar, Auwal Bala & Kumam, Poom & Malik, Maulana & Ibrahim, Abdulkarim Hassan, 2022. "A hybrid conjugate gradient based approach for solving unconstrained optimization and motion control problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 640-657.
    18. Andrei, Neculai, 2010. "Accelerated scaled memoryless BFGS preconditioned conjugate gradient algorithm for unconstrained optimization," European Journal of Operational Research, Elsevier, vol. 204(3), pages 410-420, August.
    19. Hanif D. Sherali & Churlzu Lim, 2007. "Enhancing Lagrangian Dual Optimization for Linear Programs by Obviating Nondifferentiability," INFORMS Journal on Computing, INFORMS, vol. 19(1), pages 3-13, February.
    20. David Ek & Anders Forsgren, 2021. "Exact linesearch limited-memory quasi-Newton methods for minimizing a quadratic function," Computational Optimization and Applications, Springer, vol. 79(3), pages 789-816, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:202:y:2024:i:2:d:10.1007_s10957-024-02449-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.