Another Conjugate Gradient Algorithm with Guaranteed Descent and Conjugacy Conditions for Large-scale Unconstrained Optimization
Author
Abstract
Suggested Citation
DOI: 10.1007/s10957-013-0285-9
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Avinoam Perry, 1978. "Technical Note—A Modified Conjugate Gradient Algorithm," Operations Research, INFORMS, vol. 26(6), pages 1073-1078, December.
- David F. Shanno, 1978. "Conjugate Gradient Methods with Inexact Searches," Mathematics of Operations Research, INFORMS, vol. 3(3), pages 244-256, August.
- Y.H. Dai & Y. Yuan, 2001. "An Efficient Hybrid Conjugate Gradient Method for Unconstrained Optimization," Annals of Operations Research, Springer, vol. 103(1), pages 33-47, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hongwei Liu & Zexian Liu, 2019. "An Efficient Barzilai–Borwein Conjugate Gradient Method for Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 879-906, March.
- Dong, Xiao Liang & Liu, Hong Wei & He, Yu Bo, 2015. "New version of the three-term conjugate gradient method based on spectral scaling conjugacy condition that generates descent search direction," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 606-617.
- XiaoLiang Dong & Hongwei Liu & Yubo He, 2015. "A Self-Adjusting Conjugate Gradient Method with Sufficient Descent Condition and Conjugacy Condition," Journal of Optimization Theory and Applications, Springer, vol. 165(1), pages 225-241, April.
- Zhifeng Dai, 2017. "Comments on Hybrid Conjugate Gradient Algorithm for Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 175(1), pages 286-291, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jinbao Jian & Lin Yang & Xianzhen Jiang & Pengjie Liu & Meixing Liu, 2020. "A Spectral Conjugate Gradient Method with Descent Property," Mathematics, MDPI, vol. 8(2), pages 1-13, February.
- Andrei, Neculai, 2010. "Accelerated scaled memoryless BFGS preconditioned conjugate gradient algorithm for unconstrained optimization," European Journal of Operational Research, Elsevier, vol. 204(3), pages 410-420, August.
- B. Sellami & Y. Chaib, 2016. "A new family of globally convergent conjugate gradient methods," Annals of Operations Research, Springer, vol. 241(1), pages 497-513, June.
- Yasushi Narushima & Shummin Nakayama & Masashi Takemura & Hiroshi Yabe, 2023. "Memoryless Quasi-Newton Methods Based on the Spectral-Scaling Broyden Family for Riemannian Optimization," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 639-664, May.
- Elena Tovbis & Vladimir Krutikov & Predrag Stanimirović & Vladimir Meshechkin & Aleksey Popov & Lev Kazakovtsev, 2023. "A Family of Multi-Step Subgradient Minimization Methods," Mathematics, MDPI, vol. 11(10), pages 1-24, May.
- Hiroyuki Sakai & Hideaki Iiduka, 2020. "Hybrid Riemannian conjugate gradient methods with global convergence properties," Computational Optimization and Applications, Springer, vol. 77(3), pages 811-830, December.
- Serge Gratton & Vincent Malmedy & Philippe Toint, 2012. "Using approximate secant equations in limited memory methods for multilevel unconstrained optimization," Computational Optimization and Applications, Springer, vol. 51(3), pages 967-979, April.
- Fischer, Manfred M. & Staufer, Petra, 1998. "Optimization in an Error Backpropagation Neural Network Environment with a Performance Test on a Pattern Classification Problem," MPRA Paper 77810, University Library of Munich, Germany.
- N. Andrei, 2009. "Hybrid Conjugate Gradient Algorithm for Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 141(2), pages 249-264, May.
- Jose Giovany Babativa-Márquez & José Luis Vicente-Villardón, 2021. "Logistic Biplot by Conjugate Gradient Algorithms and Iterated SVD," Mathematics, MDPI, vol. 9(16), pages 1-19, August.
- Ke-Lin Du & Chi-Sing Leung & Wai Ho Mow & M. N. S. Swamy, 2022. "Perceptron: Learning, Generalization, Model Selection, Fault Tolerance, and Role in the Deep Learning Era," Mathematics, MDPI, vol. 10(24), pages 1-46, December.
- Nash, John C. & Varadhan, Ravi, 2011. "Unifying Optimization Algorithms to Aid Software System Users: optimx for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 43(i09).
- N. Mahdavi-Amiri & M. Shaeiri, 2020. "A conjugate gradient sampling method for nonsmooth optimization," 4OR, Springer, vol. 18(1), pages 73-90, March.
- Parvaneh Faramarzi & Keyvan Amini, 2019. "A Modified Spectral Conjugate Gradient Method with Global Convergence," Journal of Optimization Theory and Applications, Springer, vol. 182(2), pages 667-690, August.
- C. X. Kou & Y. H. Dai, 2015. "A Modified Self-Scaling Memoryless Broyden–Fletcher–Goldfarb–Shanno Method for Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 165(1), pages 209-224, April.
- Waziri, Mohammed Yusuf & Ahmed, Kabiru & Sabi’u, Jamilu, 2019. "A family of Hager–Zhang conjugate gradient methods for system of monotone nonlinear equations," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 645-660.
- Hanif D. Sherali & Churlzu Lim, 2007. "Enhancing Lagrangian Dual Optimization for Linear Programs by Obviating Nondifferentiability," INFORMS Journal on Computing, INFORMS, vol. 19(1), pages 3-13, February.
- Khalid Abdulaziz Alnowibet & Salem Mahdi & Ahmad M. Alshamrani & Karam M. Sallam & Ali Wagdy Mohamed, 2022. "A Family of Hybrid Stochastic Conjugate Gradient Algorithms for Local and Global Minimization Problems," Mathematics, MDPI, vol. 10(19), pages 1-37, October.
- Predrag S. Stanimirović & Branislav Ivanov & Snežana Djordjević & Ivona Brajević, 2018. "New Hybrid Conjugate Gradient and Broyden–Fletcher–Goldfarb–Shanno Conjugate Gradient Methods," Journal of Optimization Theory and Applications, Springer, vol. 178(3), pages 860-884, September.
- Chi-Cheong Chris Wong & Man-Chung Chan & Chi-Chung Lam, 2000. "Financial Time Series Forecasting By Neural Network Using Conjugate Gradient Learning Algorithm And Multiple Linear Regression Weight Initialization," Computing in Economics and Finance 2000 61, Society for Computational Economics.
More about this item
Keywords
Conjugate gradient; Wolfe line search; Descent condition; Conjugacy condition; Unconstrained optimization;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:159:y:2013:i:1:d:10.1007_s10957-013-0285-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.