IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v146y2010i2d10.1007_s10957-010-9652-y.html
   My bibliography  Save this article

Spectral Scaling BFGS Method

Author

Listed:
  • W. Y. Cheng

    (Dongguan University of Technology)

  • D. H. Li

    (South China Normal University)

Abstract

In this paper, we scale the quasiNewton equation and propose a spectral scaling BFGS method. The method has a good selfcorrecting property and can improve the behavior of the BFGS method. Compared with the standard BFGS method, the single-step convergence rate of the spectral scaling BFGS method will not be inferior to that of the steepest descent method when minimizing an n-dimensional quadratic function. In addition, when the method with exact line search is applied to minimize an n-dimensional strictly convex function, it terminates within n steps. Under appropriate conditions, we show that the spectral scaling BFGS method with Wolfe line search is globally and R-linear convergent for uniformly convex optimization problems. The reported numerical results show that the spectral scaling BFGS method outperforms the standard BFGS method.

Suggested Citation

  • W. Y. Cheng & D. H. Li, 2010. "Spectral Scaling BFGS Method," Journal of Optimization Theory and Applications, Springer, vol. 146(2), pages 305-319, August.
  • Handle: RePEc:spr:joptap:v:146:y:2010:i:2:d:10.1007_s10957-010-9652-y
    DOI: 10.1007/s10957-010-9652-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-010-9652-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-010-9652-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Al-Baali, 1998. "Numerical Experience with a Class of Self-Scaling Quasi-Newton Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 96(3), pages 533-553, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shummin Nakayama & Yasushi Narushima & Hiroshi Yabe, 2021. "Inexact proximal memoryless quasi-Newton methods based on the Broyden family for minimizing composite functions," Computational Optimization and Applications, Springer, vol. 79(1), pages 127-154, May.
    2. Yasushi Narushima & Shummin Nakayama & Masashi Takemura & Hiroshi Yabe, 2023. "Memoryless Quasi-Newton Methods Based on the Spectral-Scaling Broyden Family for Riemannian Optimization," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 639-664, May.
    3. Hiroyuki Sakai & Hideaki Iiduka, 2024. "Modified Memoryless Spectral-Scaling Broyden Family on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 202(2), pages 834-853, August.
    4. Neculai Andrei, 2018. "A Double-Parameter Scaling Broyden–Fletcher–Goldfarb–Shanno Method Based on Minimizing the Measure Function of Byrd and Nocedal for Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 178(1), pages 191-218, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neculai Andrei, 2018. "A Double-Parameter Scaling Broyden–Fletcher–Goldfarb–Shanno Method Based on Minimizing the Measure Function of Byrd and Nocedal for Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 178(1), pages 191-218, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:146:y:2010:i:2:d:10.1007_s10957-010-9652-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.