IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v486y2025ics0096300324004624.html
   My bibliography  Save this article

Nonlinear conjugate gradient method for vector optimization on Riemannian manifolds with retraction and vector transport

Author

Listed:
  • Chen, Kangming
  • Fukuda, Ellen Hidemi
  • Sato, Hiroyuki

Abstract

In this paper, we propose nonlinear conjugate gradient methods for vector optimization on Riemannian manifolds. The concepts of Wolfe and Zoutendjik conditions are extended to Riemannian manifolds. Specifically, the existence of intervals of step sizes that satisfy the Wolfe conditions is established. The convergence analysis covers the vector extensions of the Fletcher–Reeves, conjugate descent, and Dai–Yuan parameters. Under some assumptions, we prove that the sequence obtained by the proposed algorithm can converge to a Pareto stationary point. Moreover, several other choices of the parameter are discussed. Numerical experiments illustrating the practical behavior of the methods are presented.

Suggested Citation

  • Chen, Kangming & Fukuda, Ellen Hidemi & Sato, Hiroyuki, 2025. "Nonlinear conjugate gradient method for vector optimization on Riemannian manifolds with retraction and vector transport," Applied Mathematics and Computation, Elsevier, vol. 486(C).
  • Handle: RePEc:eee:apmaco:v:486:y:2025:i:c:s0096300324004624
    DOI: 10.1016/j.amc.2024.129001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300324004624
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2024.129001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hiroki Tanabe & Ellen H. Fukuda & Nobuo Yamashita, 2019. "Proximal gradient methods for multiobjective optimization and their applications," Computational Optimization and Applications, Springer, vol. 72(2), pages 339-361, March.
    2. Xiaojing Zhu, 2017. "A Riemannian conjugate gradient method for optimization on the Stiefel manifold," Computational Optimization and Applications, Springer, vol. 67(1), pages 73-110, May.
    3. Ellen Fukuda & L. Graña Drummond, 2013. "Inexact projected gradient method for vector optimization," Computational Optimization and Applications, Springer, vol. 54(3), pages 473-493, April.
    4. G. C. Bento & J. X. Cruz Neto & P. S. M. Santos, 2013. "An Inexact Steepest Descent Method for Multicriteria Optimization on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 159(1), pages 108-124, October.
    5. Shahabeddin Najafi & Masoud Hajarian, 2023. "Multiobjective Conjugate Gradient Methods on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 197(3), pages 1229-1248, June.
    6. G. C. Bento & O. P. Ferreira & P. R. Oliveira, 2012. "Unconstrained Steepest Descent Method for Multicriteria Optimization on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 154(1), pages 88-107, July.
    7. G. C. Bento & J. X. Cruz Neto, 2013. "A Subgradient Method for Multiobjective Optimization on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 159(1), pages 125-137, October.
    8. Wang Chen & Xinmin Yang & Yong Zhao, 2023. "Conditional gradient method for vector optimization," Computational Optimization and Applications, Springer, vol. 85(3), pages 857-896, July.
    9. Neculai Andrei, 2020. "Nonlinear Conjugate Gradient Methods for Unconstrained Optimization," Springer Optimization and Its Applications, Springer, number 978-3-030-42950-8, July.
    10. Hiroyuki Sakai & Hideaki Iiduka, 2021. "Sufficient Descent Riemannian Conjugate Gradient Methods," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 130-150, July.
    11. Neculai Andrei, 2020. "General Convergence Results for Nonlinear Conjugate Gradient Methods," Springer Optimization and Its Applications, in: Nonlinear Conjugate Gradient Methods for Unconstrained Optimization, chapter 0, pages 89-123, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shahabeddin Najafi & Masoud Hajarian, 2023. "Multiobjective Conjugate Gradient Methods on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 197(3), pages 1229-1248, June.
    2. João Carlos de O. Souza, 2018. "Proximal Point Methods for Lipschitz Functions on Hadamard Manifolds: Scalar and Vectorial Cases," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 745-760, December.
    3. Erik Alex Papa Quiroz & Nancy Baygorrea Cusihuallpa & Nelson Maculan, 2020. "Inexact Proximal Point Methods for Multiobjective Quasiconvex Minimization on Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 186(3), pages 879-898, September.
    4. Suyun Liu & Luis Nunes Vicente, 2023. "Convergence Rates of the Stochastic Alternating Algorithm for Bi-Objective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 198(1), pages 165-186, July.
    5. Orizon P. Ferreira & Mauricio S. Louzeiro & Leandro F. Prudente, 2020. "Iteration-Complexity and Asymptotic Analysis of Steepest Descent Method for Multiobjective Optimization on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 184(2), pages 507-533, February.
    6. Alfredo N. Iusem & Jefferson G. Melo & Ray G. Serra, 2021. "A Strongly Convergent Proximal Point Method for Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 183-200, July.
    7. N. Eslami & B. Najafi & S. M. Vaezpour, 2023. "A Trust Region Method for Solving Multicriteria Optimization Problems on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 196(1), pages 212-239, January.
    8. Henri Bonnel & Léonard Todjihoundé & Constantin Udrişte, 2015. "Semivectorial Bilevel Optimization on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 167(2), pages 464-486, November.
    9. Peng Zhang & Gejun Bao, 2018. "An Incremental Subgradient Method on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 176(3), pages 711-727, March.
    10. X. M. Wang & J. H. Wang & C. Li, 2023. "Convergence of Inexact Steepest Descent Algorithm for Multiobjective Optimizations on Riemannian Manifolds Without Curvature Constraints," Journal of Optimization Theory and Applications, Springer, vol. 198(1), pages 187-214, July.
    11. Bento, G.C. & Cruz Neto, J.X. & Oliveira, P.R. & Soubeyran, A., 2014. "The self regulation problem as an inexact steepest descent method for multicriteria optimization," European Journal of Operational Research, Elsevier, vol. 235(3), pages 494-502.
    12. Wumei Sun & Hongwei Liu & Zexian Liu, 2021. "A Class of Accelerated Subspace Minimization Conjugate Gradient Methods," Journal of Optimization Theory and Applications, Springer, vol. 190(3), pages 811-840, September.
    13. Hiroki Tanabe & Ellen H. Fukuda & Nobuo Yamashita, 2023. "An accelerated proximal gradient method for multiobjective optimization," Computational Optimization and Applications, Springer, vol. 86(2), pages 421-455, November.
    14. G. Cocchi & M. Lapucci, 2020. "An augmented Lagrangian algorithm for multi-objective optimization," Computational Optimization and Applications, Springer, vol. 77(1), pages 29-56, September.
    15. G. C. Bento & J. X. Cruz Neto & L. V. Meireles & A. Soubeyran, 2022. "Pareto solutions as limits of collective traps: an inexact multiobjective proximal point algorithm," Annals of Operations Research, Springer, vol. 316(2), pages 1425-1443, September.
    16. Wang Chen & Xinmin Yang & Yong Zhao, 2023. "Conditional gradient method for vector optimization," Computational Optimization and Applications, Springer, vol. 85(3), pages 857-896, July.
    17. Salihu, Nasiru & Kumam, Poom & Sulaiman, Ibrahim Mohammed & Arzuka, Ibrahim & Kumam, Wiyada, 2024. "An efficient Newton-like conjugate gradient method with restart strategy and its application," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 226(C), pages 354-372.
    18. Abubakar, Auwal Bala & Kumam, Poom & Malik, Maulana & Ibrahim, Abdulkarim Hassan, 2022. "A hybrid conjugate gradient based approach for solving unconstrained optimization and motion control problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 640-657.
    19. Qing-Rui He & Sheng-Jie Li & Bo-Ya Zhang & Chun-Rong Chen, 2024. "A family of conjugate gradient methods with guaranteed positiveness and descent for vector optimization," Computational Optimization and Applications, Springer, vol. 89(3), pages 805-842, December.
    20. Tiantian Zhao & Wei Hong Yang, 2023. "A Nonlinear Conjugate Gradient Method Using Inexact First-Order Information," Journal of Optimization Theory and Applications, Springer, vol. 198(2), pages 502-530, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:486:y:2025:i:c:s0096300324004624. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.