Convergence of Inertial Dynamics Driven by Sums of Potential and Nonpotential Operators with Implicit Newton-Like Damping
Author
Abstract
Suggested Citation
DOI: 10.1007/s10957-023-02228-x
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Hedy Attouch & Zaki Chbani & Jalal Fadili & Hassan Riahi, 2022. "Fast Convergence of Dynamical ADMM via Time Scaling of Damped Inertial Dynamics," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 704-736, June.
- Bolte, Jérôme & Castera, Camille & Pauwels, Edouard & Févotte, Cédric, 2019. "An Inertial Newton Algorithm for Deep Learning," TSE Working Papers 19-1043, Toulouse School of Economics (TSE).
- H. Attouch & P. Redont & B. F. Svaiter, 2013. "Global Convergence of a Closed-Loop Regularized Newton Method for Solving Monotone Inclusions in Hilbert Spaces," Journal of Optimization Theory and Applications, Springer, vol. 157(3), pages 624-650, June.
- B. Abbas & H. Attouch & Benar F. Svaiter, 2014. "Newton-Like Dynamics and Forward-Backward Methods for Structured Monotone Inclusions in Hilbert Spaces," Journal of Optimization Theory and Applications, Springer, vol. 161(2), pages 331-360, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bolte, Jérôme & Le, Tam & Pauwels, Edouard & Silveti-Falls, Antonio, 2022.
"Nonsmooth Implicit Differentiation for Machine Learning and Optimization,"
TSE Working Papers
22-1314, Toulouse School of Economics (TSE).
- Bolte, Jérôme & Le, Tam & Pauwels, Edouard & Silveti-Falls, Antonio, 2022. "Nonsmooth Implicit Differentiation for Machine Learning and Optimization," TSE Working Papers 126768, Toulouse School of Economics (TSE).
- Boţ, R.I. & Csetnek, E.R. & Vuong, P.T., 2020. "The forward–backward–forward method from continuous and discrete perspective for pseudo-monotone variational inequalities in Hilbert spaces," European Journal of Operational Research, Elsevier, vol. 287(1), pages 49-60.
- B. Abbas & H. Attouch & Benar F. Svaiter, 2014. "Newton-Like Dynamics and Forward-Backward Methods for Structured Monotone Inclusions in Hilbert Spaces," Journal of Optimization Theory and Applications, Springer, vol. 161(2), pages 331-360, May.
- Boţ, Radu Ioan & Kanzler, Laura, 2021. "A forward-backward dynamical approach for nonsmooth problems with block structure coupled by a smooth function," Applied Mathematics and Computation, Elsevier, vol. 394(C).
- Emilie Chouzenoux & Jean-Baptiste Fest, 2022. "SABRINA: A Stochastic Subspace Majorization-Minimization Algorithm," Journal of Optimization Theory and Applications, Springer, vol. 195(3), pages 919-952, December.
- Pankaj Gautam & Daya Ram Sahu & Avinash Dixit & Tanmoy Som, 2021. "Forward–Backward–Half Forward Dynamical Systems for Monotone Inclusion Problems with Application to v-GNE," Journal of Optimization Theory and Applications, Springer, vol. 190(2), pages 491-523, August.
- Bolte, Jérôme & Pauwels, Edouard, 2019. "Conservative set valued fields, automatic differentiation, stochastic gradient methods and deep learning," TSE Working Papers 19-1044, Toulouse School of Economics (TSE).
- Bolte, Jérôme & Glaudin, Lilian & Pauwels, Edouard & Serrurier, Matthieu, 2021. "A Hölderian backtracking method for min-max and min-min problems," TSE Working Papers 21-1243, Toulouse School of Economics (TSE).
- Bolte, Jérôme & Pauwels, Edouard, 2021. "A mathematical model for automatic differentiation in machine learning," TSE Working Papers 21-1184, Toulouse School of Economics (TSE).
- Claire Boyer & Antoine Godichon-Baggioni, 2023. "On the asymptotic rate of convergence of Stochastic Newton algorithms and their Weighted Averaged versions," Computational Optimization and Applications, Springer, vol. 84(3), pages 921-972, April.
- Rieger, Janosch & Tam, Matthew K., 2020. "Backward-Forward-Reflected-Backward Splitting for Three Operator Monotone Inclusions," Applied Mathematics and Computation, Elsevier, vol. 381(C).
More about this item
Keywords
Proximal-gradient algorithm; Inertial method; Hessian-driven damping; Nonpotential operator; Cocoercive operator; Structured monotone equation; Implicit Newton-like damping;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:198:y:2023:i:1:d:10.1007_s10957-023-02228-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.