An Inertial Newton Algorithm for Deep Learning
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Hédy Attouch & Jérôme Bolte & Patrick Redont & Antoine Soubeyran, 2010. "Proximal Alternating Minimization and Projection Methods for Nonconvex Problems: An Approach Based on the Kurdyka-Łojasiewicz Inequality," Mathematics of Operations Research, INFORMS, vol. 35(2), pages 438-457, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Samir Adly & Hedy Attouch & Van Nam Vo, 2023. "Convergence of Inertial Dynamics Driven by Sums of Potential and Nonpotential Operators with Implicit Newton-Like Damping," Journal of Optimization Theory and Applications, Springer, vol. 198(1), pages 290-331, July.
- Bolte, Jérôme & Le, Tam & Pauwels, Edouard & Silveti-Falls, Antonio, 2022.
"Nonsmooth Implicit Differentiation for Machine Learning and Optimization,"
TSE Working Papers
22-1314, Toulouse School of Economics (TSE).
- Bolte, Jérôme & Le, Tam & Pauwels, Edouard & Silveti-Falls, Antonio, 2022. "Nonsmooth Implicit Differentiation for Machine Learning and Optimization," TSE Working Papers 126768, Toulouse School of Economics (TSE).
- Claire Boyer & Antoine Godichon-Baggioni, 2023. "On the asymptotic rate of convergence of Stochastic Newton algorithms and their Weighted Averaged versions," Computational Optimization and Applications, Springer, vol. 84(3), pages 921-972, April.
- Emilie Chouzenoux & Jean-Baptiste Fest, 2022. "SABRINA: A Stochastic Subspace Majorization-Minimization Algorithm," Journal of Optimization Theory and Applications, Springer, vol. 195(3), pages 919-952, December.
- Bolte, Jérôme & Pauwels, Edouard, 2019. "Conservative set valued fields, automatic differentiation, stochastic gradient methods and deep learning," TSE Working Papers 19-1044, Toulouse School of Economics (TSE).
- Bolte, Jérôme & Glaudin, Lilian & Pauwels, Edouard & Serrurier, Matthieu, 2021. "A Hölderian backtracking method for min-max and min-min problems," TSE Working Papers 21-1243, Toulouse School of Economics (TSE).
- Bolte, Jérôme & Pauwels, Edouard, 2021. "A mathematical model for automatic differentiation in machine learning," TSE Working Papers 21-1184, Toulouse School of Economics (TSE).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Le Thi Khanh Hien & Duy Nhat Phan & Nicolas Gillis, 2022. "Inertial alternating direction method of multipliers for non-convex non-smooth optimization," Computational Optimization and Applications, Springer, vol. 83(1), pages 247-285, September.
- Francesco Rinaldi & Damiano Zeffiro, 2023. "Avoiding bad steps in Frank-Wolfe variants," Computational Optimization and Applications, Springer, vol. 84(1), pages 225-264, January.
- Kely D. V. Villacorta & Paulo R. Oliveira & Antoine Soubeyran, 2014.
"A Trust-Region Method for Unconstrained Multiobjective Problems with Applications in Satisficing Processes,"
Journal of Optimization Theory and Applications, Springer, vol. 160(3), pages 865-889, March.
- Kelyd.V. Villacorta & Paulo R. Oliveira & Antoine Soubeyran, 2014. "A Trust-Region Method for Unconstrained Multiobjective Problems with Applications in Satisficing Processes," Post-Print hal-01463767, HAL.
- Bo Jiang & Tianyi Lin & Shiqian Ma & Shuzhong Zhang, 2019. "Structured nonconvex and nonsmooth optimization: algorithms and iteration complexity analysis," Computational Optimization and Applications, Springer, vol. 72(1), pages 115-157, January.
- Zehui Jia & Jieru Huang & Xingju Cai, 2021. "Proximal-like incremental aggregated gradient method with Bregman distance in weakly convex optimization problems," Journal of Global Optimization, Springer, vol. 80(4), pages 841-864, August.
- Glaydston Carvalho Bento & João Xavier Cruz Neto & Antoine Soubeyran & Valdinês Leite Sousa Júnior, 2016.
"Dual Descent Methods as Tension Reduction Systems,"
Journal of Optimization Theory and Applications, Springer, vol. 171(1), pages 209-227, October.
- Glaydston de Carvalho Bento & João Xavier da Cruz Neto & Antoine Soubeyran & Valdinês Leite de Sousa Júnior, 2016. "Dual Descent Methods as Tension Reduction Systems," Post-Print hal-01690176, HAL.
- Bolte, Jérôme & Le, Tam & Pauwels, Edouard & Silveti-Falls, Antonio, 2022.
"Nonsmooth Implicit Differentiation for Machine Learning and Optimization,"
TSE Working Papers
22-1314, Toulouse School of Economics (TSE).
- Bolte, Jérôme & Le, Tam & Pauwels, Edouard & Silveti-Falls, Antonio, 2022. "Nonsmooth Implicit Differentiation for Machine Learning and Optimization," TSE Working Papers 126768, Toulouse School of Economics (TSE).
- Masoud Ahookhosh & Le Thi Khanh Hien & Nicolas Gillis & Panagiotis Patrinos, 2021. "A Block Inertial Bregman Proximal Algorithm for Nonsmooth Nonconvex Problems with Application to Symmetric Nonnegative Matrix Tri-Factorization," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 234-258, July.
- Alexander Y. Kruger & Nguyen H. Thao, 2015. "Quantitative Characterizations of Regularity Properties of Collections of Sets," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 41-67, January.
- Jing Zhao & Qiao-Li Dong & Michael Th. Rassias & Fenghui Wang, 2022. "Two-step inertial Bregman alternating minimization algorithm for nonconvex and nonsmooth problems," Journal of Global Optimization, Springer, vol. 84(4), pages 941-966, December.
- Fornasier, Massimo & Maly, Johannes & Naumova, Valeriya, 2021. "Robust recovery of low-rank matrices with non-orthogonal sparse decomposition from incomplete measurements," Applied Mathematics and Computation, Elsevier, vol. 392(C).
- Emanuel Laude & Peter Ochs & Daniel Cremers, 2020. "Bregman Proximal Mappings and Bregman–Moreau Envelopes Under Relative Prox-Regularity," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 724-761, March.
- W. Ackooij & S. Demassey & P. Javal & H. Morais & W. Oliveira & B. Swaminathan, 2021. "A bundle method for nonsmooth DC programming with application to chance-constrained problems," Computational Optimization and Applications, Springer, vol. 78(2), pages 451-490, March.
- Nguyen Hieu Thao, 2018. "A convergent relaxation of the Douglas–Rachford algorithm," Computational Optimization and Applications, Springer, vol. 70(3), pages 841-863, July.
- Jérôme Bolte & Edouard Pauwels, 2016. "Majorization-Minimization Procedures and Convergence of SQP Methods for Semi-Algebraic and Tame Programs," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 442-465, May.
- D. Russell Luke & Shoham Sabach & Marc Teboulle & Kobi Zatlawey, 2017. "A simple globally convergent algorithm for the nonsmooth nonconvex single source localization problem," Journal of Global Optimization, Springer, vol. 69(4), pages 889-909, December.
- Bian, Fengmiao & Zhang, Xiaoqun, 2021. "A parameterized Douglas–Rachford splitting algorithm for nonconvex optimization," Applied Mathematics and Computation, Elsevier, vol. 410(C).
- J. X. Cruz Neto & P. R. Oliveira & P. A. Soares & A. Soubeyran, 2014.
"Proximal Point Method on Finslerian Manifolds and the “Effort–Accuracy” Trade-off,"
Journal of Optimization Theory and Applications, Springer, vol. 162(3), pages 873-891, September.
- Joao Xavier Cruz Neto & Paulo Roberto Oliveira & Jr Soares & Antoine Soubeyran, 2014. "Proximal Point Method on Finslerian Manifolds and the "Effort-Accuracy" Trade-off," Post-Print hal-01474289, HAL.
- Liu, Jingjing & Ma, Ruijie & Zeng, Xiaoyang & Liu, Wanquan & Wang, Mingyu & Chen, Hui, 2021. "An efficient non-convex total variation approach for image deblurring and denoising," Applied Mathematics and Computation, Elsevier, vol. 397(C).
- Tianxiang Liu & Ting Kei Pong, 2017. "Further properties of the forward–backward envelope with applications to difference-of-convex programming," Computational Optimization and Applications, Springer, vol. 67(3), pages 489-520, July.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2019-10-21 (Big Data)
- NEP-CMP-2019-10-21 (Computational Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tse:wpaper:123630. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/tsetofr.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.