IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v90y2025i1d10.1007_s10589-024-00626-z.html
   My bibliography  Save this article

Fast convergence of the primal-dual dynamical system and corresponding algorithms for a nonsmooth bilinearly coupled saddle point problem

Author

Listed:
  • Ke-wei Ding

    (Southwest Minzu University)

  • Jörg Fliege

    (University of Southampton)

  • Phan Tu Vuong

    (University of Southampton)

Abstract

This paper studies the convergence rate of a second-order dynamical system associated with a nonsmooth bilinearly coupled convex-concave saddle point problem, as well as the convergence rate of its corresponding discretizations. We derive the convergence rate of the primal-dual gap for the second-order dynamical system with asymptotically vanishing damping term. Based on an implicit discretization scheme, we propose a primal-dual algorithm and provide a non-ergodic convergence rate under a general setting for the inertial parameters when one objective function is continuously differentiable and convex and the other is a proper, convex and lower semicontinuous function. For this algorithm we derive a $$O\left( 1/k^2 \right) $$ O 1 / k 2 convergence rate under three classical rules proposed by Nesterov, Chambolle-Dossal and Attouch-Cabot without assuming strong convexity, which is compatible with the results of the continuous-time dynamic system. For the case when both objective functions are continuously differentiable and convex, we further present a primal-dual algorithm based on an explicit discretization. We provide a corresponding non-ergodic convergence rate for this algorithm and show that the sequence of iterates generated weakly converges to a primal-dual optimal solution. Finally, we present numerical experiments that indicate the superior numerical performance of both algorithms.

Suggested Citation

  • Ke-wei Ding & Jörg Fliege & Phan Tu Vuong, 2025. "Fast convergence of the primal-dual dynamical system and corresponding algorithms for a nonsmooth bilinearly coupled saddle point problem," Computational Optimization and Applications, Springer, vol. 90(1), pages 151-192, January.
  • Handle: RePEc:spr:coopap:v:90:y:2025:i:1:d:10.1007_s10589-024-00626-z
    DOI: 10.1007/s10589-024-00626-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-024-00626-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-024-00626-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hedy Attouch & Zaki Chbani & Jalal Fadili & Hassan Riahi, 2022. "Fast Convergence of Dynamical ADMM via Time Scaling of Damped Inertial Dynamics," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 704-736, June.
    2. Laurent Condat, 2013. "A Primal–Dual Splitting Method for Convex Optimization Involving Lipschitzian, Proximable and Linear Composite Terms," Journal of Optimization Theory and Applications, Springer, vol. 158(2), pages 460-479, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yunda Dong, 2021. "Weak convergence of an extended splitting method for monotone inclusions," Journal of Global Optimization, Springer, vol. 79(1), pages 257-277, January.
    2. Puya Latafat & Panagiotis Patrinos, 2017. "Asymmetric forward–backward–adjoint splitting for solving monotone inclusions involving three operators," Computational Optimization and Applications, Springer, vol. 68(1), pages 57-93, September.
    3. Xin Jiang & Lieven Vandenberghe, 2022. "Bregman primal–dual first-order method and application to sparse semidefinite programming," Computational Optimization and Applications, Springer, vol. 81(1), pages 127-159, January.
    4. Cécile Bastidon & Myriam Bontonou & Pierre Borgnat & Pablo Jensen & Patrice Abry & Antoine Parent, 2024. "Learning smooth graphs with sparse temporal variations to explore long-term financial trends," Post-Print hal-04731912, HAL.
    5. Radu Ioan Bot & Dang-Khoa Nguyen, 2020. "The Proximal Alternating Direction Method of Multipliers in the Nonconvex Setting: Convergence Analysis and Rates," Mathematics of Operations Research, INFORMS, vol. 45(2), pages 682-712, May.
    6. Julian Rasch & Antonin Chambolle, 2020. "Inexact first-order primal–dual algorithms," Computational Optimization and Applications, Springer, vol. 76(2), pages 381-430, June.
    7. Sun, Shilin & Wang, Tianyang & Yang, Hongxing & Chu, Fulei, 2022. "Damage identification of wind turbine blades using an adaptive method for compressive beamforming based on the generalized minimax-concave penalty function," Renewable Energy, Elsevier, vol. 181(C), pages 59-70.
    8. Fu, Penghui & Tan, Zhiqiang, 2024. "Block-wise primal-dual algorithms for large-scale doubly penalized ANOVA modeling," Computational Statistics & Data Analysis, Elsevier, vol. 194(C).
    9. David Degras, 2021. "Sparse group fused lasso for model segmentation: a hybrid approach," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(3), pages 625-671, September.
    10. Fernando Roldán, 2025. "Forward-Primal-Dual-Half-Forward Algorithm for Splitting Four Operators," Journal of Optimization Theory and Applications, Springer, vol. 204(1), pages 1-26, January.
    11. Yawei Shi & Liang Ran & Jialong Tang & Xiangzhao Wu, 2022. "Distributed Optimization Algorithm for Composite Optimization Problems with Non-Smooth Function," Mathematics, MDPI, vol. 10(17), pages 1-17, September.
    12. Xiaoliang Wang & Liping Pang & Qi Wu & Mingkun Zhang, 2021. "An Adaptive Proximal Bundle Method with Inexact Oracles for a Class of Nonconvex and Nonsmooth Composite Optimization," Mathematics, MDPI, vol. 9(8), pages 1-27, April.
    13. Luis Briceño-Arias & Sergio López Rivera, 2019. "A Projected Primal–Dual Method for Solving Constrained Monotone Inclusions," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 907-924, March.
    14. Walaa M. Moursi & Lieven Vandenberghe, 2019. "Douglas–Rachford Splitting for the Sum of a Lipschitz Continuous and a Strongly Monotone Operator," Journal of Optimization Theory and Applications, Springer, vol. 183(1), pages 179-198, October.
    15. Patrick R. Johnstone & Pierre Moulin, 2017. "Local and global convergence of a general inertial proximal splitting scheme for minimizing composite functions," Computational Optimization and Applications, Springer, vol. 67(2), pages 259-292, June.
    16. Ernest K. Ryu & Bằng Công Vũ, 2020. "Finding the Forward-Douglas–Rachford-Forward Method," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 858-876, March.
    17. Samir Adly & Hedy Attouch & Van Nam Vo, 2023. "Convergence of Inertial Dynamics Driven by Sums of Potential and Nonpotential Operators with Implicit Newton-Like Damping," Journal of Optimization Theory and Applications, Springer, vol. 198(1), pages 290-331, July.
    18. Adil Salim & Laurent Condat & Konstantin Mishchenko & Peter Richtárik, 2022. "Dualize, Split, Randomize: Toward Fast Nonsmooth Optimization Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 195(1), pages 102-130, October.
    19. Fernando Roldán, 2024. "Forward-reflected-backward and shadow-Douglas–Rachford with partial inverse for solving monotone inclusions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 100(3), pages 723-752, December.
    20. Luis Briceño-Arias & Fernando Roldán, 2023. "Primal-dual splittings as fixed point iterations in the range of linear operators," Journal of Global Optimization, Springer, vol. 85(4), pages 847-866, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:90:y:2025:i:1:d:10.1007_s10589-024-00626-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.