IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v160y2014i2d10.1007_s10957-013-0403-8.html
   My bibliography  Save this article

Numerical Solutions to the Bellman Equation of Optimal Control

Author

Listed:
  • Cesar O. Aguilar

    (California State University)

  • Arthur J. Krener

    (Naval Postgraduate School)

Abstract

In this paper, we present a numerical algorithm to compute high-order approximate solutions to Bellman’s dynamic programming equation that arises in the optimal stabilization of discrete-time nonlinear control systems. The method uses a patchy technique to build local Taylor polynomial approximations defined on small domains, which are then patched together to create a piecewise smooth approximation. The numerical domain is dynamically computed as the level sets of the value function are propagated in reverse time under the closed-loop dynamics. The patch domains are constructed such that their radial boundaries are contained in the level sets of the value function and their lateral boundaries are constructed as invariant sets of the closed-loop dynamics. To minimize the computational effort, an adaptive subdivision algorithm is used to determine the number of patches on each level set depending on the relative error in the dynamic programming equation. Numerical tests in 2D and 3D are given to illustrate the accuracy of the method.

Suggested Citation

  • Cesar O. Aguilar & Arthur J. Krener, 2014. "Numerical Solutions to the Bellman Equation of Optimal Control," Journal of Optimization Theory and Applications, Springer, vol. 160(2), pages 527-552, February.
  • Handle: RePEc:spr:joptap:v:160:y:2014:i:2:d:10.1007_s10957-013-0403-8
    DOI: 10.1007/s10957-013-0403-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-013-0403-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-013-0403-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. C. Beeler & H. T. Tran & H. T. Banks, 2000. "Feedback Control Methodologies for Nonlinear Systems," Journal of Optimization Theory and Applications, Springer, vol. 107(1), pages 1-33, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Askhat Diveev & Elizaveta Shmalko, 2022. "Machine Learning Feedback Control Approach Based on Symbolic Regression for Robotic Systems," Mathematics, MDPI, vol. 10(21), pages 1-32, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prasanna Parvathy & Jeevamma Jacob, 2021. "Inverse Optimal Control Via Diagonal Stabilization Applied to Attitude Tracking of a Reusable Launch Vehicle," Journal of Optimization Theory and Applications, Springer, vol. 191(2), pages 794-822, December.
    2. Vito Polito, 2020. "Nonlinear Business Cycle and Optimal Policy: A VSTAR Perspective," CESifo Working Paper Series 8060, CESifo.
    3. Li-Gang Lin & Yew-Wen Liang & Wen-Yuan Hsieh, 2020. "Convex Quadratic Equation," Journal of Optimization Theory and Applications, Springer, vol. 186(3), pages 1006-1028, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:160:y:2014:i:2:d:10.1007_s10957-013-0403-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.