IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v58y2014i4p751-767.html
   My bibliography  Save this article

Vector quasi-equilibrium problems: separation, saddle points and error bounds for the solution set

Author

Listed:
  • S.-M. Guu
  • J. Li

Abstract

In this paper, we employ the image space analysis (for short, ISA) to investigate vector quasi-equilibrium problems (for short, VQEPs) with a variable ordering relation, the constrained condition of which also consists of a variable ordering relation. The quasi relatively weak VQEP (for short, qr-weak VQEP) are defined by introducing the notion of the quasi relative interior. Linear separation for VQEP (res., qr-weak VQEP) is characterized by utilizing the quasi interior of a regularization of the image and the saddle points of generalized Lagrangian functions. Lagrangian type optimality conditions for VQEP (res., qr-weak VQEP) are then presented. Gap functions for VQEP (res., qr-weak VQEP) are also provided and moreover, it is shown that an error bound holds for the solution set of VQEP (res., qr-weak VQEP) with respect to the gap function under strong monotonicity. Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • S.-M. Guu & J. Li, 2014. "Vector quasi-equilibrium problems: separation, saddle points and error bounds for the solution set," Journal of Global Optimization, Springer, vol. 58(4), pages 751-767, April.
  • Handle: RePEc:spr:jglopt:v:58:y:2014:i:4:p:751-767
    DOI: 10.1007/s10898-013-0073-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-013-0073-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-013-0073-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. G. Mastroeni, 2012. "On the image space analysis for vector quasi-equilibrium problems with a variable ordering relation," Journal of Global Optimization, Springer, vol. 53(2), pages 203-214, June.
    2. J. Li & N. J. Huang, 2010. "Image Space Analysis for Vector Variational Inequalities with Matrix Inequality Constraints and Applications," Journal of Optimization Theory and Applications, Springer, vol. 145(3), pages 459-477, June.
    3. A. Maugeri & F. Raciti, 2010. "Remarks on infinite dimensional duality," Journal of Global Optimization, Springer, vol. 46(4), pages 581-588, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fabián Flores-Bazán & Giandomenico Mastroeni & Cristián Vera, 2019. "Proper or Weak Efficiency via Saddle Point Conditions in Cone-Constrained Nonconvex Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 181(3), pages 787-816, June.
    2. Shengjie Li & Yangdong Xu & Manxue You & Shengkun Zhu, 2018. "Constrained Extremum Problems and Image Space Analysis–Part I: Optimality Conditions," Journal of Optimization Theory and Applications, Springer, vol. 177(3), pages 609-636, June.
    3. J. Li & L. Yang, 2018. "Set-Valued Systems with Infinite-Dimensional Image and Applications," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 868-895, December.
    4. J. Li & G. Mastroeni, 2016. "Image Convexity of Generalized Systems with Infinite-Dimensional Image and Applications," Journal of Optimization Theory and Applications, Springer, vol. 169(1), pages 91-115, April.
    5. Shengjie Li & Yangdong Xu & Manxue You & Shengkun Zhu, 2018. "Constrained Extremum Problems and Image Space Analysis—Part III: Generalized Systems," Journal of Optimization Theory and Applications, Springer, vol. 177(3), pages 660-678, June.
    6. Jun Li & Giandomenico Mastroeni, 2018. "Refinements on Gap Functions and Optimality Conditions for Vector Quasi-Equilibrium Problems via Image Space Analysis," Journal of Optimization Theory and Applications, Springer, vol. 177(3), pages 696-716, June.
    7. Jiawei Chen & Shengjie Li & Zhongping Wan & Jen-Chih Yao, 2015. "Vector Variational-Like Inequalities with Constraints: Separation and Alternative," Journal of Optimization Theory and Applications, Springer, vol. 166(2), pages 460-479, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. K. Zhu & S. J. Li, 2014. "Unified Duality Theory for Constrained Extremum Problems. Part I: Image Space Analysis," Journal of Optimization Theory and Applications, Springer, vol. 161(3), pages 738-762, June.
    2. Shengkun Zhu, 2018. "Image Space Analysis to Lagrange-Type Duality for Constrained Vector Optimization Problems with Applications," Journal of Optimization Theory and Applications, Springer, vol. 177(3), pages 743-769, June.
    3. Shengjie Li & Yangdong Xu & Manxue You & Shengkun Zhu, 2018. "Constrained Extremum Problems and Image Space Analysis–Part I: Optimality Conditions," Journal of Optimization Theory and Applications, Springer, vol. 177(3), pages 609-636, June.
    4. Jun Li & Giandomenico Mastroeni, 2018. "Refinements on Gap Functions and Optimality Conditions for Vector Quasi-Equilibrium Problems via Image Space Analysis," Journal of Optimization Theory and Applications, Springer, vol. 177(3), pages 696-716, June.
    5. Annamaria Barbagallo & Paolo Mauro, 2012. "Evolutionary Variational Formulation for Oligopolistic Market Equilibrium Problems with Production Excesses," Journal of Optimization Theory and Applications, Springer, vol. 155(1), pages 288-314, October.
    6. Patrizia Daniele & Sofia Giuffrè & Mariagrazia Lorino, 2016. "Functional inequalities, regularity and computation of the deficit and surplus variables in the financial equilibrium problem," Journal of Global Optimization, Springer, vol. 65(3), pages 575-596, July.
    7. Hong-Zhi Wei & Chun-Rong Chen & Sheng-Jie Li, 2018. "A Unified Characterization of Multiobjective Robustness via Separation," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 86-102, October.
    8. Jiawei Chen & Shengjie Li & Zhongping Wan & Jen-Chih Yao, 2015. "Vector Variational-Like Inequalities with Constraints: Separation and Alternative," Journal of Optimization Theory and Applications, Springer, vol. 166(2), pages 460-479, August.
    9. Y. D. Xu & S. J. Li, 2013. "Optimality Conditions for Generalized Ky Fan Quasi-Inequalities with Applications," Journal of Optimization Theory and Applications, Springer, vol. 157(3), pages 663-684, June.
    10. Annamaria Barbagallo & Stéphane Pia, 2015. "Weighted Quasi-Variational Inequalities in Non-pivot Hilbert Spaces and Applications," Journal of Optimization Theory and Applications, Springer, vol. 164(3), pages 781-803, March.
    11. Maria Bernadette Donato & Monica Milasi & Laura Scrimali, 2011. "Walrasian Equilibrium Problem with Memory Term," Journal of Optimization Theory and Applications, Springer, vol. 151(1), pages 64-80, October.
    12. J. Li & G. Mastroeni, 2016. "Image Convexity of Generalized Systems with Infinite-Dimensional Image and Applications," Journal of Optimization Theory and Applications, Springer, vol. 169(1), pages 91-115, April.
    13. Georgia Fargetta & Antonino Maugeri & Laura Scrimali, 2022. "A Stochastic Nash Equilibrium Problem for Medical Supply Competition," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 354-380, June.
    14. Patrizia Daniele & Sofia Giuffrè & Antonino Maugeri & Fabio Raciti, 2014. "Duality Theory and Applications to Unilateral Problems," Journal of Optimization Theory and Applications, Springer, vol. 162(3), pages 718-734, September.
    15. Barbagallo, Annamaria & Daniele, Patrizia & Giuffrè, Sofia & Maugeri, Antonino, 2014. "Variational approach for a general financial equilibrium problem: The Deficit Formula, the Balance Law and the Liability Formula. A path to the economy recovery," European Journal of Operational Research, Elsevier, vol. 237(1), pages 231-244.
    16. J. Li & L. Yang, 2018. "Set-Valued Systems with Infinite-Dimensional Image and Applications," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 868-895, December.
    17. Laura Scrimali, 2022. "On the Stability of Coalitions in Supply Chain Networks via Generalized Complementarity Conditions," Networks and Spatial Economics, Springer, vol. 22(2), pages 379-394, June.
    18. Baasansuren Jadamba & Fabio Raciti, 2015. "On the Modeling of Some Environmental Games with Uncertain Data," Journal of Optimization Theory and Applications, Springer, vol. 167(3), pages 959-968, December.
    19. Laura Scrimali, 2012. "Infinite Dimensional Duality Theory Applied to Investment Strategies in Environmental Policy," Journal of Optimization Theory and Applications, Springer, vol. 154(1), pages 258-277, July.
    20. Antonino Maugeri & Laura Scrimali, 2016. "A New Approach to Solve Convex Infinite-Dimensional Bilevel Problems: Application to the Pollution Emission Price Problem," Journal of Optimization Theory and Applications, Springer, vol. 169(2), pages 370-387, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:58:y:2014:i:4:p:751-767. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.