IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v125y2005i1d10.1007_s10957-004-1724-4.html
   My bibliography  Save this article

Separation Theorem Based on the Quasirelative Interior and Application to Duality Theory

Author

Listed:
  • F. Cammaroto

    (University of Messina)

  • B. Di Bella

    (University of Messina)

Abstract

We present a separation theorem in which the classic interior is replaced by the quasirelative interior. We apply this result to a constrained problem in the infinite-dimensional convex case, making use of a condition replacing the standard Slater condition, which in some cases can fail.

Suggested Citation

  • F. Cammaroto & B. Di Bella, 2005. "Separation Theorem Based on the Quasirelative Interior and Application to Duality Theory," Journal of Optimization Theory and Applications, Springer, vol. 125(1), pages 223-229, April.
  • Handle: RePEc:spr:joptap:v:125:y:2005:i:1:d:10.1007_s10957-004-1724-4
    DOI: 10.1007/s10957-004-1724-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-004-1724-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-004-1724-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fabián Flores-Bazán & Giandomenico Mastroeni & Cristián Vera, 2019. "Proper or Weak Efficiency via Saddle Point Conditions in Cone-Constrained Nonconvex Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 181(3), pages 787-816, June.
    2. J. Li & L. Yang, 2018. "Set-Valued Systems with Infinite-Dimensional Image and Applications," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 868-895, December.
    3. Z. A. Zhou & X. M. Yang, 2011. "Optimality Conditions of Generalized Subconvexlike Set-Valued Optimization Problems Based on the Quasi-Relative Interior," Journal of Optimization Theory and Applications, Springer, vol. 150(2), pages 327-340, August.
    4. J. Li & G. Mastroeni, 2016. "Image Convexity of Generalized Systems with Infinite-Dimensional Image and Applications," Journal of Optimization Theory and Applications, Springer, vol. 169(1), pages 91-115, April.
    5. Do Luu & Dinh Hang, 2014. "Efficient solutions and optimality conditions for vector equilibrium problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 79(2), pages 163-177, April.
    6. R. I. Boţ & E. R. Csetnek & A. Moldovan, 2008. "Revisiting Some Duality Theorems via the Quasirelative Interior in Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 139(1), pages 67-84, October.
    7. Adela Capătă, 2012. "Optimality Conditions for Extended Ky Fan Inequality with Cone and Affine Constraints and Their Applications," Journal of Optimization Theory and Applications, Springer, vol. 152(3), pages 661-674, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:125:y:2005:i:1:d:10.1007_s10957-004-1724-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.