IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v191y2021i1d10.1007_s10957-021-01926-8.html
   My bibliography  Save this article

Optimal Control Computation for Nonlinear Fractional Time-Delay Systems with State Inequality Constraints

Author

Listed:
  • Chongyang Liu

    (Shandong Technology and Business University
    Curtin University)

  • Zhaohua Gong

    (Shandong Technology and Business University)

  • Changjun Yu

    (Shanghai University)

  • Song Wang

    (Curtin University)

  • Kok Lay Teo

    (Sunway University
    Tianjin University of Finance and Economics)

Abstract

In this paper, a numerical method is developed for solving a class of delay fractional optimal control problems involving nonlinear time-delay systems and subject to state inequality constraints. The fractional derivatives in this class of problems are described in the sense of Caputo, and they can be of different orders. First, we propose a numerical integration scheme for the fractional time-delay system and prove that the convergence rate of the numerical solution to the exact one is of second order based on Taylor expansion and linear interpolation. This gives rise to a discrete-time optimal control problem. Then, we derive the gradient formulas of the cost and constraint functions with respect to the decision variables and present a gradient computation procedure. On this basis, a gradient-based optimization algorithm is developed to solve the resulting discrete-time optimal control problem. Finally, several example problems are solved to demonstrate the effectiveness of the developed solution approach.

Suggested Citation

  • Chongyang Liu & Zhaohua Gong & Changjun Yu & Song Wang & Kok Lay Teo, 2021. "Optimal Control Computation for Nonlinear Fractional Time-Delay Systems with State Inequality Constraints," Journal of Optimization Theory and Applications, Springer, vol. 191(1), pages 83-117, October.
  • Handle: RePEc:spr:joptap:v:191:y:2021:i:1:d:10.1007_s10957-021-01926-8
    DOI: 10.1007/s10957-021-01926-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-021-01926-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-021-01926-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saeed Balochian & Nahid Rajaee, 2018. "Fractional-Order Optimal Control of Fractional-Order Linear Vibration Systems with Time Delay," International Journal of System Dynamics Applications (IJSDA), IGI Global, vol. 7(3), pages 72-93, July.
    2. Wen Li & Song Wang & Volker Rehbock, 2019. "Numerical Solution of Fractional Optimal Control," Journal of Optimization Theory and Applications, Springer, vol. 180(2), pages 556-573, February.
    3. Tian Liang Guo, 2013. "The Necessary Conditions of Fractional Optimal Control in the Sense of Caputo," Journal of Optimization Theory and Applications, Springer, vol. 156(1), pages 115-126, January.
    4. Changjun Yu & Qun Lin & Ryan Loxton & Kok Lay Teo & Guoqiang Wang, 2016. "A Hybrid Time-Scaling Transformation for Time-Delay Optimal Control Problems," Journal of Optimization Theory and Applications, Springer, vol. 169(3), pages 876-901, June.
    5. Gong, Zhaohua & Liu, Chongyang & Teo, Kok Lay & Wang, Song & Wu, Yonghong, 2021. "Numerical solution of free final time fractional optimal control problems," Applied Mathematics and Computation, Elsevier, vol. 405(C).
    6. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    7. Kok Lay Teo & Bin Li & Changjun Yu & Volker Rehbock, 2021. "Applied and Computational Optimal Control," Springer Optimization and Its Applications, Springer, number 978-3-030-69913-0, December.
    8. Pan Mu & Lei Wang & Chongyang Liu, 2020. "A Control Parameterization Method to Solve the Fractional-Order Optimal Control Problem," Journal of Optimization Theory and Applications, Springer, vol. 187(1), pages 234-247, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chongyang Liu & Changjun Yu & Zhaohua Gong & Huey Tyng Cheong & Kok Lay Teo, 2023. "Numerical Computation of Optimal Control Problems with Atangana–Baleanu Fractional Derivatives," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 798-816, May.
    2. Gong, Zhaohua & Liu, Chongyang & Teo, Kok Lay & Yi, Xiaopeng, 2022. "Optimal control of nonlinear fractional systems with multiple pantograph‐delays," Applied Mathematics and Computation, Elsevier, vol. 425(C).
    3. Liu, Chongyang & Zhou, Tuo & Gong, Zhaohua & Yi, Xiaopeng & Teo, Kok Lay & Wang, Song, 2023. "Robust optimal control of nonlinear fractional systems," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    4. Chongyang Liu & Zhaohua Gong & Kok Lay Teo & Song Wang, 2022. "Optimal Control of Nonlinear Fractional-Order Systems with Multiple Time-Varying Delays," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 856-876, June.
    5. Marzban, Hamid Reza & Nezami, Atiyeh, 2022. "Analysis of nonlinear fractional optimal control systems described by delay Volterra–Fredholm integral equations via a new spectral collocation method," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chongyang Liu & Changjun Yu & Zhaohua Gong & Huey Tyng Cheong & Kok Lay Teo, 2023. "Numerical Computation of Optimal Control Problems with Atangana–Baleanu Fractional Derivatives," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 798-816, May.
    2. Chongyang Liu & Zhaohua Gong & Kok Lay Teo & Song Wang, 2022. "Optimal Control of Nonlinear Fractional-Order Systems with Multiple Time-Varying Delays," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 856-876, June.
    3. Heydari, M.H. & Hooshmandasl, M.R. & Maalek Ghaini, F.M. & Cattani, C., 2016. "Wavelets method for solving fractional optimal control problems," Applied Mathematics and Computation, Elsevier, vol. 286(C), pages 139-154.
    4. Gong, Zhaohua & Liu, Chongyang & Teo, Kok Lay & Yi, Xiaopeng, 2022. "Optimal control of nonlinear fractional systems with multiple pantograph‐delays," Applied Mathematics and Computation, Elsevier, vol. 425(C).
    5. Gong, Zhaohua & Liu, Chongyang & Teo, Kok Lay & Wang, Song & Wu, Yonghong, 2021. "Numerical solution of free final time fractional optimal control problems," Applied Mathematics and Computation, Elsevier, vol. 405(C).
    6. Antonio Rubia & Trino-Manuel Ñíguez, 2006. "Forecasting the conditional covariance matrix of a portfolio under long-run temporal dependence," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(6), pages 439-458.
    7. Jonas Mockus, 2010. "On simulation of optimal strategies and Nash equilibrium in the financial market context," Journal of Global Optimization, Springer, vol. 48(1), pages 129-143, September.
    8. Claudio Morana, 2010. "Heteroskedastic Factor Vector Autoregressive Estimation of Persistent and Non Persistent Processes Subject to Structural Breaks," ICER Working Papers - Applied Mathematics Series 36-2010, ICER - International Centre for Economic Research.
    9. Claudio Morana, 2014. "Factor Vector Autoregressive Estimation of Heteroskedastic Persistent and Non Persistent Processes Subject to Structural Breaks," Working Papers 273, University of Milano-Bicocca, Department of Economics, revised May 2014.
    10. Luis Gil-Alana, 2004. "Forecasting the real output using fractionally integrated techniques," Applied Economics, Taylor & Francis Journals, vol. 36(14), pages 1583-1589.
    11. Nielsen, Morten Orregaard & Shimotsu, Katsumi, 2007. "Determining the cointegrating rank in nonstationary fractional systems by the exact local Whittle approach," Journal of Econometrics, Elsevier, vol. 141(2), pages 574-596, December.
    12. Giorgio Canarella & Luis A. Gil-Alana & Rangan Gupta & Stephen M. Miller, 2022. "Globalization, long memory, and real interest rate convergence: a historical perspective," Empirical Economics, Springer, vol. 63(5), pages 2331-2355, November.
    13. Hassler, U. & Marmol, F. & Velasco, C., 2006. "Residual log-periodogram inference for long-run relationships," Journal of Econometrics, Elsevier, vol. 130(1), pages 165-207, January.
    14. Haldrup, Niels & Nielsen, Morten Orregaard, 2006. "A regime switching long memory model for electricity prices," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 349-376.
    15. Pierre Perron & Zhongjun Qu, 2007. "An Analytical Evaluation of the Log-periodogram Estimate in the Presence of Level Shifts," Boston University - Department of Economics - Working Papers Series wp2007-044, Boston University - Department of Economics.
    16. Derek Bond & Michael J. Harrison & Edward J. O'Brien, 2005. "Testing for Long Memory and Nonlinear Time Series: A Demand for Money Study," Trinity Economics Papers tep20021, Trinity College Dublin, Department of Economics.
    17. Geoffrey Ngene & Ann Nduati Mungai & Allen K. Lynch, 2018. "Long-Term Dependency Structure and Structural Breaks: Evidence from the U.S. Sector Returns and Volatility," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 21(02), pages 1-38, June.
    18. Youwei Li & Xue-Zhong He, 2005. "Long Memory, Heterogeneity, and Trend Chasing," Computing in Economics and Finance 2005 113, Society for Computational Economics.
    19. Ra l De Jes s Guti rrez & Lidia E. Carvajal Guti rrez & Oswaldo Garcia Salgado, 2023. "Value at Risk and Expected Shortfall Estimation for Mexico s Isthmus Crude Oil Using Long-Memory GARCH-EVT Combined Approaches," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 467-480, July.
    20. Karlis, Alexandros & Galanis, Girogos & Terovitis, Spyridon & Turner, Matthew, 2017. "Heterogeneity and Clustering of Defaults," Economic Research Papers 270011, University of Warwick - Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:191:y:2021:i:1:d:10.1007_s10957-021-01926-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.