IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v273y2016icp465-476.html
   My bibliography  Save this article

A study on the mild solution of impulsive fractional evolution equations

Author

Listed:
  • shu, Xiao-Bao
  • Shi, Yajing

Abstract

This paper is concerned with the formula of mild solutions to impulsive fractional evolution equation. For linear fractional impulsive evolution equations [8–25,27,30,31], described mild solution as integrals over (tk,tk+1](k=1,2,…,m) and [0, t1]. On the other hand, in [26,28,29], their solutions were expressed as integrals over [0, t]. However, it is still not clear what are the correct expressions of solutions to the fractional order impulsive evolution equations. In this paper, firstly, we prove that the solutions obtained in [8–25,27,30,31] are not correct; secondly, we present the right form of the solutions to linear fractional impulsive evolution equations with order 0 < α < 1 and 1 < α < 2, respectively; finally, we show that the reason that the solutions to an impulsive ordinary evolution equation are not distinct.

Suggested Citation

  • shu, Xiao-Bao & Shi, Yajing, 2016. "A study on the mild solution of impulsive fractional evolution equations," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 465-476.
  • Handle: RePEc:eee:apmaco:v:273:y:2016:i:c:p:465-476
    DOI: 10.1016/j.amc.2015.10.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315013521
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.10.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhenhai Liu & Xiuwen Li, 2013. "On the Controllability of Impulsive Fractional Evolution Inclusions in Banach Spaces," Journal of Optimization Theory and Applications, Springer, vol. 156(1), pages 167-182, January.
    2. JinRong Wang & Michal Fec̆kan & Yong Zhou, 2013. "Relaxed Controls for Nonlinear Fractional Impulsive Evolution Equations," Journal of Optimization Theory and Applications, Springer, vol. 156(1), pages 13-32, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sousa, J. Vanterler da C. & Oliveira, D.S. & Capelas de Oliveira, E., 2021. "A note on the mild solutions of Hilfer impulsive fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    2. Mohan Raja, M. & Vijayakumar, V., 2022. "Existence results for Caputo fractional mixed Volterra-Fredholm-type integrodifferential inclusions of order r ∈ (1,2) with sectorial operators," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    3. Longfei Lin & Yansheng Liu & Daliang Zhao, 2021. "Controllability of Impulsive ψ -Caputo Fractional Evolution Equations with Nonlocal Conditions," Mathematics, MDPI, vol. 9(12), pages 1-14, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Zuomao & Lu, Fangxia, 2017. "Approximate controllability of a multi-valued fractional impulsive stochastic partial integro-differential equation with infinite delay," Applied Mathematics and Computation, Elsevier, vol. 292(C), pages 425-447.
    2. Surendra Kumar, 2017. "Mild Solution and Fractional Optimal Control of Semilinear System with Fixed Delay," Journal of Optimization Theory and Applications, Springer, vol. 174(1), pages 108-121, July.
    3. Shengda Liu & JinRong Wang, 2017. "Optimal Controls of Systems Governed by Semilinear Fractional Differential Equations with Not Instantaneous Impulses," Journal of Optimization Theory and Applications, Springer, vol. 174(2), pages 455-473, August.
    4. Alka Chadha & Dwijendra N. Pandey, 2018. "Approximate Controllability of a Neutral Stochastic Fractional Integro-Differential Inclusion with Nonlocal Conditions," Journal of Theoretical Probability, Springer, vol. 31(2), pages 705-740, June.
    5. Rafał Kamocki & Marek Majewski, 2017. "On the Existence and Continuous Dependence on Parameter of Solutions to Some Fractional Dirichlet Problem with Application to Lagrange Optimal Control Problem," Journal of Optimization Theory and Applications, Springer, vol. 174(1), pages 32-46, July.
    6. JinRong Wang & Michal Fečkan & Amar Debbouche, 2019. "Time Optimal Control of a System Governed by Non-instantaneous Impulsive Differential Equations," Journal of Optimization Theory and Applications, Springer, vol. 182(2), pages 573-587, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:273:y:2016:i:c:p:465-476. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.