IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v81y2021i2d10.1007_s10898-021-01051-w.html
   My bibliography  Save this article

Decomposition in derivative-free optimization

Author

Listed:
  • Kaiwen Ma

    (Carnegie Mellon University)

  • Nikolaos V. Sahinidis

    (Georgia Institute of Technology)

  • Sreekanth Rajagopalan

    (The Dow Chemical Company)

  • Satyajith Amaran

    (The Dow Chemical Company)

  • Scott J Bury

    (The Dow Chemical Company)

Abstract

This paper proposes a novel decomposition framework for derivative-free optimization (DFO) algorithms. Our framework significantly extends the scope of current DFO solvers to larger-scale problems. We show that the proposed framework closely relates to the superiorization methodology that is traditionally used for improving the efficiency of feasibility-seeking algorithms for constrained optimization problems in a derivative-based setting. We analyze the convergence behavior of the framework in the context of global search algorithms. A practical implementation is developed and exemplified with the global model-based solver Stable Noisy Optimization by Branch and Fit (SNOBFIT) [36]. To investigate the decomposition framework’s performance, we conduct extensive computational studies on a collection of over 300 test problems of varying dimensions and complexity. We observe significant improvements in the quality of solutions for a large fraction of the test problems. Regardless of problem convexity and smoothness, decomposition leads to over 50% improvement in the objective function after 2500 function evaluations for over 90% of our test problems with more than 75 variables.

Suggested Citation

  • Kaiwen Ma & Nikolaos V. Sahinidis & Sreekanth Rajagopalan & Satyajith Amaran & Scott J Bury, 2021. "Decomposition in derivative-free optimization," Journal of Global Optimization, Springer, vol. 81(2), pages 269-292, October.
  • Handle: RePEc:spr:jglopt:v:81:y:2021:i:2:d:10.1007_s10898-021-01051-w
    DOI: 10.1007/s10898-021-01051-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-021-01051-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-021-01051-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. NESTEROV, Yurii, 2013. "Gradient methods for minimizing composite functions," LIDAM Reprints CORE 2510, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Yair Censor & Alexander Zaslavski, 2013. "Convergence and perturbation resilience of dynamic string-averaging projection methods," Computational Optimization and Applications, Springer, vol. 54(1), pages 65-76, January.
    3. Genetha Anne Gray & Tamara G. Kolda & Ken Sale & Malin M. Young, 2004. "Optimizing an Empirical Scoring Function for Transmembrane Protein Structure Determination," INFORMS Journal on Computing, INFORMS, vol. 16(4), pages 406-418, November.
    4. Yair Censor & Alexander J. Zaslavski, 2015. "Strict Fejér Monotonicity by Superiorization of Feasibility-Seeking Projection Methods," Journal of Optimization Theory and Applications, Springer, vol. 165(1), pages 172-187, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanni Guo & Xiaozhi Zhao, 2019. "Bounded Perturbation Resilience and Superiorization of Proximal Scaled Gradient Algorithm with Multi-Parameters," Mathematics, MDPI, vol. 7(6), pages 1-14, June.
    2. Hao Wang & Hao Zeng & Jiashan Wang, 2022. "An extrapolated iteratively reweighted $$\ell _1$$ ℓ 1 method with complexity analysis," Computational Optimization and Applications, Springer, vol. 83(3), pages 967-997, December.
    3. A. Scagliotti & P. Colli Franzone, 2022. "A piecewise conservative method for unconstrained convex optimization," Computational Optimization and Applications, Springer, vol. 81(1), pages 251-288, January.
    4. Ren Jiang & Zhifeng Ji & Wuling Mo & Suhua Wang & Mingjun Zhang & Wei Yin & Zhen Wang & Yaping Lin & Xueke Wang & Umar Ashraf, 2022. "A Novel Method of Deep Learning for Shear Velocity Prediction in a Tight Sandstone Reservoir," Energies, MDPI, vol. 15(19), pages 1-20, September.
    5. Zhaosong Lu & Xiaojun Chen, 2018. "Generalized Conjugate Gradient Methods for ℓ 1 Regularized Convex Quadratic Programming with Finite Convergence," Mathematics of Operations Research, INFORMS, vol. 43(1), pages 275-303, February.
    6. Q. L. Dong & J. Z. Huang & X. H. Li & Y. J. Cho & Th. M. Rassias, 2019. "MiKM: multi-step inertial Krasnosel’skiǐ–Mann algorithm and its applications," Journal of Global Optimization, Springer, vol. 73(4), pages 801-824, April.
    7. Masaru Ito, 2016. "New results on subgradient methods for strongly convex optimization problems with a unified analysis," Computational Optimization and Applications, Springer, vol. 65(1), pages 127-172, September.
    8. TAYLOR, Adrien B. & HENDRICKX, Julien M. & François GLINEUR, 2016. "Exact worst-case performance of first-order methods for composite convex optimization," LIDAM Discussion Papers CORE 2016052, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    9. Masoud Ahookhosh, 2019. "Accelerated first-order methods for large-scale convex optimization: nearly optimal complexity under strong convexity," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 89(3), pages 319-353, June.
    10. Dimitris Bertsimas & Ryan Cory-Wright, 2022. "A Scalable Algorithm for Sparse Portfolio Selection," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1489-1511, May.
    11. Dewei Zhang & Yin Liu & Sam Davanloo Tajbakhsh, 2022. "A First-Order Optimization Algorithm for Statistical Learning with Hierarchical Sparsity Structure," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1126-1140, March.
    12. Weibin Mo & Yufeng Liu, 2022. "Efficient learning of optimal individualized treatment rules for heteroscedastic or misspecified treatment‐free effect models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 440-472, April.
    13. Liu, Yulan & Bi, Shujun, 2019. "Error bounds for non-polyhedral convex optimization and applications to linear convergence of FDM and PGM," Applied Mathematics and Computation, Elsevier, vol. 358(C), pages 418-435.
    14. Sun, Shilin & Wang, Tianyang & Yang, Hongxing & Chu, Fulei, 2022. "Damage identification of wind turbine blades using an adaptive method for compressive beamforming based on the generalized minimax-concave penalty function," Renewable Energy, Elsevier, vol. 181(C), pages 59-70.
    15. Saif Eddin Jabari & Nikolaos M. Freris & Deepthi Mary Dilip, 2020. "Sparse Travel Time Estimation from Streaming Data," Transportation Science, INFORMS, vol. 54(1), pages 1-20, January.
    16. Ching-pei Lee & Stephen J. Wright, 2019. "Inexact Successive quadratic approximation for regularized optimization," Computational Optimization and Applications, Springer, vol. 72(3), pages 641-674, April.
    17. Le Thi Khanh Hien & Cuong V. Nguyen & Huan Xu & Canyi Lu & Jiashi Feng, 2019. "Accelerated Randomized Mirror Descent Algorithms for Composite Non-strongly Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 181(2), pages 541-566, May.
    18. Ya-Feng Liu & Xin Liu & Shiqian Ma, 2019. "On the Nonergodic Convergence Rate of an Inexact Augmented Lagrangian Framework for Composite Convex Programming," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 632-650, May.
    19. Min Li & Xiaoming Yuan, 2015. "A Strictly Contractive Peaceman-Rachford Splitting Method with Logarithmic-Quadratic Proximal Regularization for Convex Programming," Mathematics of Operations Research, INFORMS, vol. 40(4), pages 842-858, October.
    20. Reza Eghbali & Maryam Fazel, 2017. "Decomposable norm minimization with proximal-gradient homotopy algorithm," Computational Optimization and Applications, Springer, vol. 66(2), pages 345-381, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:81:y:2021:i:2:d:10.1007_s10898-021-01051-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.