IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v170y2016i3d10.1007_s10957-016-0956-4.html
   My bibliography  Save this article

A Modified Generalized Newton Method for Absolute Value Equations

Author

Listed:
  • Cui-Xia Li

    (Anyang Normal University)

Abstract

In this paper, a modified generalized Newton method is presented to solve absolute value equations, when all the singular values of the system matrix exceed 1. The convergence properties of the proposed method are given.

Suggested Citation

  • Cui-Xia Li, 2016. "A Modified Generalized Newton Method for Absolute Value Equations," Journal of Optimization Theory and Applications, Springer, vol. 170(3), pages 1055-1059, September.
  • Handle: RePEc:spr:joptap:v:170:y:2016:i:3:d:10.1007_s10957-016-0956-4
    DOI: 10.1007/s10957-016-0956-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-016-0956-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-016-0956-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Seetharama Gowda & Jong-Shi Pang, 1992. "On Solution Stability of the Linear Complementarity Problem," Mathematics of Operations Research, INFORMS, vol. 17(1), pages 77-83, February.
    2. Louis Caccetta & Biao Qu & Guanglu Zhou, 2011. "A globally and quadratically convergent method for absolute value equations," Computational Optimization and Applications, Springer, vol. 48(1), pages 45-58, January.
    3. C. Zhang & Q. J. Wei, 2009. "Global and Finite Convergence of a Generalized Newton Method for Absolute Value Equations," Journal of Optimization Theory and Applications, Springer, vol. 143(2), pages 391-403, November.
    4. Zhang, Jian-Jun, 2015. "The relaxed nonlinear PHSS-like iteration method for absolute value equations," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 266-274.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuan Liang & Chaoqian Li, 2023. "Modified Picard-like Method for Solving Absolute Value Equations," Mathematics, MDPI, vol. 11(4), pages 1-18, February.
    2. Cuixia Li, 2022. "Sufficient Conditions for the Unique Solution of a New Class of Sylvester-Like Absolute Value Equations," Journal of Optimization Theory and Applications, Springer, vol. 195(2), pages 676-683, November.
    3. Peng Guo & Javed Iqbal & Syed Muhammad Ghufran & Muhammad Arif & Reem K. Alhefthi & Lei Shi, 2023. "A New Efficient Method for Absolute Value Equations," Mathematics, MDPI, vol. 11(15), pages 1-9, July.
    4. An Wang & Yang Cao & Jing-Xian Chen, 2019. "Modified Newton-Type Iteration Methods for Generalized Absolute Value Equations," Journal of Optimization Theory and Applications, Springer, vol. 181(1), pages 216-230, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shota Yamanaka & Nobuo Yamashita, 2018. "Duality of nonconvex optimization with positively homogeneous functions," Computational Optimization and Applications, Springer, vol. 71(2), pages 435-456, November.
    2. An Wang & Yang Cao & Jing-Xian Chen, 2019. "Modified Newton-Type Iteration Methods for Generalized Absolute Value Equations," Journal of Optimization Theory and Applications, Springer, vol. 181(1), pages 216-230, April.
    3. Yuan Li & Hai-Shan Han & Dan-Dan Yang, 2014. "A Penalized-Equation-Based Generalized Newton Method for Solving Absolute-Value Linear Complementarity Problems," Journal of Mathematics, Hindawi, vol. 2014, pages 1-10, September.
    4. Zhang, Jian-Jun, 2015. "The relaxed nonlinear PHSS-like iteration method for absolute value equations," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 266-274.
    5. J. Y. Bello Cruz & O. P. Ferreira & L. F. Prudente, 2016. "On the global convergence of the inexact semi-smooth Newton method for absolute value equation," Computational Optimization and Applications, Springer, vol. 65(1), pages 93-108, September.
    6. Ke, Yi-Fen & Ma, Chang-Feng, 2017. "SOR-like iteration method for solving absolute value equations," Applied Mathematics and Computation, Elsevier, vol. 311(C), pages 195-202.
    7. Shi-Liang Wu & Peng Guo, 2016. "On the Unique Solvability of the Absolute Value Equation," Journal of Optimization Theory and Applications, Springer, vol. 169(2), pages 705-712, May.
    8. Miao, Xin-He & Yang, Jiantao & Hu, Shenglong, 2015. "A generalized Newton method for absolute value equations associated with circular cones," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 155-168.
    9. Karan N. Chadha & Ankur A. Kulkarni, 2022. "On independent cliques and linear complementarity problems," Indian Journal of Pure and Applied Mathematics, Springer, vol. 53(4), pages 1036-1057, December.
    10. van der Laan, G. & Talman, A.J.J. & Yang, Z.F., 2005. "Computing Integral Solutions of Complementarity Problems," Other publications TiSEM b8e0c74e-2219-4ab0-99a2-0, Tilburg University, School of Economics and Management.
    11. Hoang Ngoc Tuan, 2015. "Boundedness of a Type of Iterative Sequences in Two-Dimensional Quadratic Programming," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 234-245, January.
    12. Xiao Wang & Xinzhen Zhang & Guangming Zhou, 2020. "SDP relaxation algorithms for $$\mathbf {P}(\mathbf {P}_0)$$P(P0)-tensor detection," Computational Optimization and Applications, Springer, vol. 75(3), pages 739-752, April.
    13. Moosaei, H. & Ketabchi, S. & Noor, M.A. & Iqbal, J. & Hooshyarbakhsh, V., 2015. "Some techniques for solving absolute value equations," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 696-705.
    14. Zhang, Yongxiong & Zheng, Hua & Lu, Xiaoping & Vong, Seakweng, 2023. "Modulus-based synchronous multisplitting iteration methods without auxiliary variable for solving vertical linear complementarity problems," Applied Mathematics and Computation, Elsevier, vol. 458(C).
    15. Guo-qiang Wang & Yu-jing Yue & Xin-zhong Cai, 2009. "Weighted-path-following interior-point algorithm to monotone mixed linear complementarity problem," Fuzzy Information and Engineering, Springer, vol. 1(4), pages 435-445, December.
    16. van der Laan, Gerard & Talman, Dolf & Yang, Zaifu, 2011. "Solving discrete systems of nonlinear equations," European Journal of Operational Research, Elsevier, vol. 214(3), pages 493-500, November.
    17. E. Demidenko, 2008. "Criteria for Unconstrained Global Optimization," Journal of Optimization Theory and Applications, Springer, vol. 136(3), pages 375-395, March.
    18. R. B. Bapat & S. K. Neogy, 2016. "On a quadratic programming problem involving distances in trees," Annals of Operations Research, Springer, vol. 243(1), pages 365-373, August.
    19. Zheng, Hua & Vong, Seakweng & Liu, Ling, 2019. "A direct preconditioned modulus-based iteration method for solving nonlinear complementarity problems of H-matrices," Applied Mathematics and Computation, Elsevier, vol. 353(C), pages 396-405.
    20. Zheng-Hai Huang & Yu-Fan Li & Yong Wang, 2023. "A fixed point iterative method for tensor complementarity problems with the implicit Z-tensors," Journal of Global Optimization, Springer, vol. 86(2), pages 495-520, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:170:y:2016:i:3:d:10.1007_s10957-016-0956-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.