IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v167y2015i1d10.1007_s10957-015-0724-x.html
   My bibliography  Save this article

On Optimality of the Parameters of Self-Scaling Memoryless Quasi-Newton Updating Formulae

Author

Listed:
  • Saman Babaie-Kafaki

    (Institute for Research in Fundamental Sciences (IPM))

Abstract

Based on eigenvalue analyses, well-structured upper bounds for the condition number of the scaled memoryless quasi-Newton updating formulae Broyden–Fletcher–Goldfarb–Shanno and Davidon–Fletcher–Powell are obtained. Then, it is shown that the scaling parameter proposed by Oren and Spedicato is the unique minimizer of the given upper bound for the condition number of scaled memoryless Broyden–Fletcher–Goldfarb–Shanno update, and the scaling parameter proposed by Oren and Luenberger is the unique minimizer of the given upper bound for the condition number of scaled memoryless Davidon–Fletcher–Powell update. Thus, scaling parameters proposed by Oren et al. may enhance numerical stability of the self-scaling memoryless Broyden–Fletcher–Goldfarb–Shanno and Davidon–Fletcher–Powell methods.

Suggested Citation

  • Saman Babaie-Kafaki, 2015. "On Optimality of the Parameters of Self-Scaling Memoryless Quasi-Newton Updating Formulae," Journal of Optimization Theory and Applications, Springer, vol. 167(1), pages 91-101, October.
  • Handle: RePEc:spr:joptap:v:167:y:2015:i:1:d:10.1007_s10957-015-0724-x
    DOI: 10.1007/s10957-015-0724-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-015-0724-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-015-0724-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Z. Zhang & N. Y. Deng & L. H. Chen, 1999. "New Quasi-Newton Equation and Related Methods for Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 102(1), pages 147-167, July.
    2. Saman Babaie-Kafaki, 2012. "A Quadratic Hybridization of Polak–Ribière–Polyak and Fletcher–Reeves Conjugate Gradient Methods," Journal of Optimization Theory and Applications, Springer, vol. 154(3), pages 916-932, September.
    3. Saman Babaie-Kafaki, 2012. "A note on the global convergence theorem of the scaled conjugate gradient algorithms proposed by Andrei," Computational Optimization and Applications, Springer, vol. 52(2), pages 409-414, June.
    4. Shmuel S. Oren, 1974. "Self-Scaling Variable Metric (SSVM) Algorithms," Management Science, INFORMS, vol. 20(5), pages 863-874, January.
    5. Wenyu Sun & Ya-Xiang Yuan, 2006. "Optimization Theory and Methods," Springer Optimization and Its Applications, Springer, number 978-0-387-24976-6, December.
    6. Shmuel S. Oren & David G. Luenberger, 1974. "Self-Scaling Variable Metric (SSVM) Algorithms," Management Science, INFORMS, vol. 20(5), pages 845-862, January.
    7. Andrei, Neculai, 2010. "Accelerated scaled memoryless BFGS preconditioned conjugate gradient algorithm for unconstrained optimization," European Journal of Operational Research, Elsevier, vol. 204(3), pages 410-420, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. XiaoLiang Dong & Deren Han & Zhifeng Dai & Lixiang Li & Jianguang Zhu, 2018. "An Accelerated Three-Term Conjugate Gradient Method with Sufficient Descent Condition and Conjugacy Condition," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 944-961, December.
    2. Fatemeh Dargahi & Saman Babaie-Kafaki & Zohre Aminifard, 2024. "Eigenvalue Analyses on the Memoryless Davidon–Fletcher–Powell Method Based on a Spectral Secant Equation," Journal of Optimization Theory and Applications, Springer, vol. 200(1), pages 394-403, January.
    3. Neculai Andrei, 2018. "A Double-Parameter Scaling Broyden–Fletcher–Goldfarb–Shanno Method Based on Minimizing the Measure Function of Byrd and Nocedal for Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 178(1), pages 191-218, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saman Babaie-Kafaki & Reza Ghanbari, 2017. "A class of adaptive Dai–Liao conjugate gradient methods based on the scaled memoryless BFGS update," 4OR, Springer, vol. 15(1), pages 85-92, March.
    2. Fahimeh Biglari & Farideh Mahmoodpur, 2016. "Scaling Damped Limited-Memory Updates for Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 170(1), pages 177-188, July.
    3. C. X. Kou & Y. H. Dai, 2015. "A Modified Self-Scaling Memoryless Broyden–Fletcher–Goldfarb–Shanno Method for Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 165(1), pages 209-224, April.
    4. Babaie-Kafaki, Saman & Ghanbari, Reza, 2014. "The Dai–Liao nonlinear conjugate gradient method with optimal parameter choices," European Journal of Operational Research, Elsevier, vol. 234(3), pages 625-630.
    5. Nataj, Sarah & Lui, S.H., 2020. "Superlinear convergence of nonlinear conjugate gradient method and scaled memoryless BFGS method based on assumptions about the initial point," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    6. Martin Buhmann & Dirk Siegel, 2021. "Implementing and modifying Broyden class updates for large scale optimization," Computational Optimization and Applications, Springer, vol. 78(1), pages 181-203, January.
    7. M. Al-Baali, 1998. "Numerical Experience with a Class of Self-Scaling Quasi-Newton Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 96(3), pages 533-553, March.
    8. Waziri, Mohammed Yusuf & Ahmed, Kabiru & Sabi’u, Jamilu, 2019. "A family of Hager–Zhang conjugate gradient methods for system of monotone nonlinear equations," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 645-660.
    9. S. Cipolla & C. Di Fiore & P. Zellini, 2020. "A variation of Broyden class methods using Householder adaptive transforms," Computational Optimization and Applications, Springer, vol. 77(2), pages 433-463, November.
    10. Vahid Morovati & Hadi Basirzadeh & Latif Pourkarimi, 2018. "Quasi-Newton methods for multiobjective optimization problems," 4OR, Springer, vol. 16(3), pages 261-294, September.
    11. Saman Babaie-Kafaki, 2012. "A note on the global convergence theorem of the scaled conjugate gradient algorithms proposed by Andrei," Computational Optimization and Applications, Springer, vol. 52(2), pages 409-414, June.
    12. Yasushi Narushima & Shummin Nakayama & Masashi Takemura & Hiroshi Yabe, 2023. "Memoryless Quasi-Newton Methods Based on the Spectral-Scaling Broyden Family for Riemannian Optimization," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 639-664, May.
    13. Saha, Tanay & Rakshit, Suman & Khare, Swanand R., 2023. "Linearly structured quadratic model updating using partial incomplete eigendata," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    14. Guang Li & Paat Rusmevichientong & Huseyin Topaloglu, 2015. "The d -Level Nested Logit Model: Assortment and Price Optimization Problems," Operations Research, INFORMS, vol. 63(2), pages 325-342, April.
    15. Zheng, Sanpeng & Feng, Renzhong, 2023. "A variable projection method for the general radial basis function neural network," Applied Mathematics and Computation, Elsevier, vol. 451(C).
    16. Kaori Sugiki & Yasushi Narushima & Hiroshi Yabe, 2012. "Globally Convergent Three-Term Conjugate Gradient Methods that Use Secant Conditions and Generate Descent Search Directions for Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 153(3), pages 733-757, June.
    17. Jörg Fliege & Andrey Tin & Alain Zemkoho, 2021. "Gauss–Newton-type methods for bilevel optimization," Computational Optimization and Applications, Springer, vol. 78(3), pages 793-824, April.
    18. Hai-Jun Wang & Qin Ni, 2010. "A Convex Approximation Method For Large Scale Linear Inequality Constrained Minimization," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 27(01), pages 85-101.
    19. Chen, Liang, 2016. "A high-order modified Levenberg–Marquardt method for systems of nonlinear equations with fourth-order convergence," Applied Mathematics and Computation, Elsevier, vol. 285(C), pages 79-93.
    20. Ji, Li-Qun, 2015. "An assessment of agricultural residue resources for liquid biofuel production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 561-575.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:167:y:2015:i:1:d:10.1007_s10957-015-0724-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.