IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v154y2012i3d10.1007_s10957-012-0016-7.html
   My bibliography  Save this article

A Quadratic Hybridization of Polak–Ribière–Polyak and Fletcher–Reeves Conjugate Gradient Methods

Author

Listed:
  • Saman Babaie-Kafaki

    (Semnan University
    Institute for Research in Fundamental Sciences (IPM))

Abstract

In order to take advantage of the attractive features of Polak–Ribière–Polyak and Fletcher–Reeves conjugate gradient methods, two hybridizations of these methods are suggested, using a quadratic relaxation of a hybrid conjugate gradient parameter proposed by Gilbert and Nocedal. In the suggested methods, the hybridization parameter is computed based on a conjugacy condition. Under proper conditions, it is shown that the proposed methods are globally convergent for general objective functions. Numerical results are reported; they demonstrate the efficiency of one of the proposed methods in the sense of the performance profile introduced by Dolan and Moré.

Suggested Citation

  • Saman Babaie-Kafaki, 2012. "A Quadratic Hybridization of Polak–Ribière–Polyak and Fletcher–Reeves Conjugate Gradient Methods," Journal of Optimization Theory and Applications, Springer, vol. 154(3), pages 916-932, September.
  • Handle: RePEc:spr:joptap:v:154:y:2012:i:3:d:10.1007_s10957-012-0016-7
    DOI: 10.1007/s10957-012-0016-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-012-0016-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-012-0016-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wenyu Sun & Ya-Xiang Yuan, 2006. "Optimization Theory and Methods," Springer Optimization and Its Applications, Springer, number 978-0-387-24976-6, December.
    2. Y.H. Dai & Y. Yuan, 2001. "An Efficient Hybrid Conjugate Gradient Method for Unconstrained Optimization," Annals of Operations Research, Springer, vol. 103(1), pages 33-47, March.
    3. N. Andrei, 2009. "Hybrid Conjugate Gradient Algorithm for Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 141(2), pages 249-264, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saman Babaie-Kafaki, 2015. "On Optimality of the Parameters of Self-Scaling Memoryless Quasi-Newton Updating Formulae," Journal of Optimization Theory and Applications, Springer, vol. 167(1), pages 91-101, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinbao Jian & Lin Yang & Xianzhen Jiang & Pengjie Liu & Meixing Liu, 2020. "A Spectral Conjugate Gradient Method with Descent Property," Mathematics, MDPI, vol. 8(2), pages 1-13, February.
    2. Yasushi Narushima & Shummin Nakayama & Masashi Takemura & Hiroshi Yabe, 2023. "Memoryless Quasi-Newton Methods Based on the Spectral-Scaling Broyden Family for Riemannian Optimization," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 639-664, May.
    3. Saha, Tanay & Rakshit, Suman & Khare, Swanand R., 2023. "Linearly structured quadratic model updating using partial incomplete eigendata," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    4. Guang Li & Paat Rusmevichientong & Huseyin Topaloglu, 2015. "The d -Level Nested Logit Model: Assortment and Price Optimization Problems," Operations Research, INFORMS, vol. 63(2), pages 325-342, April.
    5. Elena Tovbis & Vladimir Krutikov & Predrag Stanimirović & Vladimir Meshechkin & Aleksey Popov & Lev Kazakovtsev, 2023. "A Family of Multi-Step Subgradient Minimization Methods," Mathematics, MDPI, vol. 11(10), pages 1-24, May.
    6. Zheng, Sanpeng & Feng, Renzhong, 2023. "A variable projection method for the general radial basis function neural network," Applied Mathematics and Computation, Elsevier, vol. 451(C).
    7. Hiroyuki Sakai & Hideaki Iiduka, 2020. "Hybrid Riemannian conjugate gradient methods with global convergence properties," Computational Optimization and Applications, Springer, vol. 77(3), pages 811-830, December.
    8. Jörg Fliege & Andrey Tin & Alain Zemkoho, 2021. "Gauss–Newton-type methods for bilevel optimization," Computational Optimization and Applications, Springer, vol. 78(3), pages 793-824, April.
    9. Hai-Jun Wang & Qin Ni, 2010. "A Convex Approximation Method For Large Scale Linear Inequality Constrained Minimization," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 27(01), pages 85-101.
    10. Chen, Liang, 2016. "A high-order modified Levenberg–Marquardt method for systems of nonlinear equations with fourth-order convergence," Applied Mathematics and Computation, Elsevier, vol. 285(C), pages 79-93.
    11. Ji, Li-Qun, 2015. "An assessment of agricultural residue resources for liquid biofuel production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 561-575.
    12. Babaie-Kafaki, Saman & Ghanbari, Reza, 2014. "The Dai–Liao nonlinear conjugate gradient method with optimal parameter choices," European Journal of Operational Research, Elsevier, vol. 234(3), pages 625-630.
    13. Marko Miladinović & Predrag Stanimirović & Sladjana Miljković, 2011. "Scalar Correction Method for Solving Large Scale Unconstrained Minimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 151(2), pages 304-320, November.
    14. Wei Bian & Xiaojun Chen, 2017. "Optimality and Complexity for Constrained Optimization Problems with Nonconvex Regularization," Mathematics of Operations Research, INFORMS, vol. 42(4), pages 1063-1084, November.
    15. Yutao Zheng & Bing Zheng, 2017. "Two New Dai–Liao-Type Conjugate Gradient Methods for Unconstrained Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 175(2), pages 502-509, November.
    16. Serge Gratton & Vincent Malmedy & Philippe Toint, 2012. "Using approximate secant equations in limited memory methods for multilevel unconstrained optimization," Computational Optimization and Applications, Springer, vol. 51(3), pages 967-979, April.
    17. Kin Keung Lai & Shashi Kant Mishra & Bhagwat Ram & Ravina Sharma, 2023. "A Conjugate Gradient Method: Quantum Spectral Polak–Ribiére–Polyak Approach for Unconstrained Optimization Problems," Mathematics, MDPI, vol. 11(23), pages 1-14, December.
    18. Priester, C. Robert & Melbourne-Thomas, Jessica & Klocker, Andreas & Corney, Stuart, 2017. "Abrupt transitions in dynamics of a NPZD model across Southern Ocean fronts," Ecological Modelling, Elsevier, vol. 359(C), pages 372-382.
    19. Yu, Yang & Wang, Yu & Deng, Rui & Yin, Yu, 2023. "New DY-HS hybrid conjugate gradient algorithm for solving optimization problem of unsteady partial differential equations with convection term," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 677-701.
    20. Ahmad M. Alshamrani & Adel Fahad Alrasheedi & Khalid Abdulaziz Alnowibet & Salem Mahdi & Ali Wagdy Mohamed, 2022. "A Hybrid Stochastic Deterministic Algorithm for Solving Unconstrained Optimization Problems," Mathematics, MDPI, vol. 10(17), pages 1-26, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:154:y:2012:i:3:d:10.1007_s10957-012-0016-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.