IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v102y1999i1d10.1023_a1021898630001.html
   My bibliography  Save this article

New Quasi-Newton Equation and Related Methods for Unconstrained Optimization

Author

Listed:
  • J. Z. Zhang
  • N. Y. Deng
  • L. H. Chen

Abstract

In unconstrained optimization, the usual quasi-Newton equation is B k+1 s k=y k, where y k is the difference of the gradients at the last two iterates. In this paper, we propose a new quasi-Newton equation, $$B_{k + 1} s_k = \tilde y_k $$ , in which $$\tilde y_k $$ is based on both the function values and gradients at the last two iterates. The new equation is superior to the old equation in the sense that $$\tilde y_k $$ better approximates ∇ 2 f(x k+1)s k than y k. Modified quasi-Newton methods based on the new quasi-Newton equation are locally and superlinearly convergent. Extensive numerical experiments have been conducted which show that the new quasi-Newton methods are encouraging.

Suggested Citation

  • J. Z. Zhang & N. Y. Deng & L. H. Chen, 1999. "New Quasi-Newton Equation and Related Methods for Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 102(1), pages 147-167, July.
  • Handle: RePEc:spr:joptap:v:102:y:1999:i:1:d:10.1023_a:1021898630001
    DOI: 10.1023/A:1021898630001
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1021898630001
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1021898630001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yong Li & Gonglin Yuan & Zhou Sheng, 2018. "An active-set algorithm for solving large-scale nonsmooth optimization models with box constraints," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-16, January.
    2. Zhanwen Shi & Guanyu Yang & Yunhai Xiao, 2016. "A limited memory BFGS algorithm for non-convex minimization with applications in matrix largest eigenvalue problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 83(2), pages 243-264, April.
    3. Fahimeh Biglari & Maghsud Solimanpur, 2013. "Scaling on the Spectral Gradient Method," Journal of Optimization Theory and Applications, Springer, vol. 158(2), pages 626-635, August.
    4. Mehiddin Al-Baali & Humaid Khalfan, 2012. "A combined class of self-scaling and modified quasi-Newton methods," Computational Optimization and Applications, Springer, vol. 52(2), pages 393-408, June.
    5. Yueting, Yang & Chengxian, Xu, 2007. "A compact limited memory method for large scale unconstrained optimization," European Journal of Operational Research, Elsevier, vol. 180(1), pages 48-56, July.
    6. S. Bojari & M. R. Eslahchi, 2020. "Global convergence of a family of modified BFGS methods under a modified weak-Wolfe–Powell line search for nonconvex functions," 4OR, Springer, vol. 18(2), pages 219-244, June.
    7. C. X. Kou & Y. H. Dai, 2015. "A Modified Self-Scaling Memoryless Broyden–Fletcher–Goldfarb–Shanno Method for Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 165(1), pages 209-224, April.
    8. Kaori Sugiki & Yasushi Narushima & Hiroshi Yabe, 2012. "Globally Convergent Three-Term Conjugate Gradient Methods that Use Secant Conditions and Generate Descent Search Directions for Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 153(3), pages 733-757, June.
    9. Fahimeh Biglari & Farideh Mahmoodpur, 2016. "Scaling Damped Limited-Memory Updates for Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 170(1), pages 177-188, July.
    10. Waziri, Mohammed Yusuf & Ahmed, Kabiru & Sabi’u, Jamilu, 2019. "A family of Hager–Zhang conjugate gradient methods for system of monotone nonlinear equations," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 645-660.
    11. D. Tarzanagh & M. Peyghami, 2015. "A new regularized limited memory BFGS-type method based on modified secant conditions for unconstrained optimization problems," Journal of Global Optimization, Springer, vol. 63(4), pages 709-728, December.
    12. Andrei, Neculai, 2010. "Accelerated scaled memoryless BFGS preconditioned conjugate gradient algorithm for unconstrained optimization," European Journal of Operational Research, Elsevier, vol. 204(3), pages 410-420, August.
    13. Vahid Morovati & Hadi Basirzadeh & Latif Pourkarimi, 2018. "Quasi-Newton methods for multiobjective optimization problems," 4OR, Springer, vol. 16(3), pages 261-294, September.
    14. Yu, Yang & Wang, Yu & Deng, Rui & Yin, Yu, 2023. "New DY-HS hybrid conjugate gradient algorithm for solving optimization problem of unsteady partial differential equations with convection term," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 677-701.
    15. Gonglin Yuan & Xiaoliang Wang & Zhou Sheng, 2020. "The Projection Technique for Two Open Problems of Unconstrained Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 186(2), pages 590-619, August.
    16. Hassan Mohammad & Mohammed Yusuf Waziri, 2019. "Structured Two-Point Stepsize Gradient Methods for Nonlinear Least Squares," Journal of Optimization Theory and Applications, Springer, vol. 181(1), pages 298-317, April.
    17. Neculai Andrei, 2018. "A Double-Parameter Scaling Broyden–Fletcher–Goldfarb–Shanno Method Based on Minimizing the Measure Function of Byrd and Nocedal for Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 178(1), pages 191-218, July.
    18. Babaie-Kafaki, Saman & Ghanbari, Reza, 2014. "The Dai–Liao nonlinear conjugate gradient method with optimal parameter choices," European Journal of Operational Research, Elsevier, vol. 234(3), pages 625-630.
    19. Zexian Liu & Hongwei Liu, 2019. "An Efficient Gradient Method with Approximately Optimal Stepsize Based on Tensor Model for Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 181(2), pages 608-633, May.
    20. Xiaoqin Cao & Rui Shan & Jing Fan & Peiliang Li, 2009. "One New Method on ARMA Model Parameters Estimation," Modern Applied Science, Canadian Center of Science and Education, vol. 3(5), pages 204-204, May.
    21. Saman Babaie-Kafaki, 2015. "On Optimality of the Parameters of Self-Scaling Memoryless Quasi-Newton Updating Formulae," Journal of Optimization Theory and Applications, Springer, vol. 167(1), pages 91-101, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:102:y:1999:i:1:d:10.1023_a:1021898630001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.