IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v78y2021i1d10.1007_s10589-020-00239-2.html
   My bibliography  Save this article

Implementing and modifying Broyden class updates for large scale optimization

Author

Listed:
  • Martin Buhmann

    (Justus-Liebig University, Mathematics Department)

  • Dirk Siegel

    (University of Cambridge, Pembroke College)

Abstract

We consider Broyden class updates for large scale optimization problems in n dimensions, restricting attention to the case when the initial second derivative approximation is the identity matrix. Under this assumption we present an implementation of the Broyden class based on a coordinate transformation on each iteration. It requires only $$2nk + O(k^{2}) + O(n)$$ 2 n k + O ( k 2 ) + O ( n ) multiplications on the kth iteration and stores $$nK+ O(K^2) + O(n)$$ n K + O ( K 2 ) + O ( n ) numbers, where K is the total number of iterations. We investigate a modification of this algorithm by a scaling approach and show a substantial improvement in performance over the BFGS method. We also study several adaptations of the new implementation to the limited memory situation, presenting algorithms that work with a fixed amount of storage independent of the number of iterations. We show that one such algorithm retains the property of quadratic termination. The practical performance of the new methods is compared with the performance of Nocedal’s (Math Comput 35:773--782, 1980) method, which is considered the benchmark in limited memory algorithms. The tests show that the new algorithms can be significantly more efficient than Nocedal’s method. Finally, we show how a scaling technique can significantly improve both Nocedal’s method and the new generalized conjugate gradient algorithm.

Suggested Citation

  • Martin Buhmann & Dirk Siegel, 2021. "Implementing and modifying Broyden class updates for large scale optimization," Computational Optimization and Applications, Springer, vol. 78(1), pages 181-203, January.
  • Handle: RePEc:spr:coopap:v:78:y:2021:i:1:d:10.1007_s10589-020-00239-2
    DOI: 10.1007/s10589-020-00239-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-020-00239-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-020-00239-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shmuel S. Oren, 1974. "Self-Scaling Variable Metric (SSVM) Algorithms," Management Science, INFORMS, vol. 20(5), pages 863-874, January.
    2. Shmuel S. Oren & David G. Luenberger, 1974. "Self-Scaling Variable Metric (SSVM) Algorithms," Management Science, INFORMS, vol. 20(5), pages 845-862, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fahimeh Biglari & Farideh Mahmoodpur, 2016. "Scaling Damped Limited-Memory Updates for Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 170(1), pages 177-188, July.
    2. Nataj, Sarah & Lui, S.H., 2020. "Superlinear convergence of nonlinear conjugate gradient method and scaled memoryless BFGS method based on assumptions about the initial point," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    3. M. Al-Baali, 1998. "Numerical Experience with a Class of Self-Scaling Quasi-Newton Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 96(3), pages 533-553, March.
    4. C. X. Kou & Y. H. Dai, 2015. "A Modified Self-Scaling Memoryless Broyden–Fletcher–Goldfarb–Shanno Method for Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 165(1), pages 209-224, April.
    5. Saman Babaie-Kafaki, 2015. "On Optimality of the Parameters of Self-Scaling Memoryless Quasi-Newton Updating Formulae," Journal of Optimization Theory and Applications, Springer, vol. 167(1), pages 91-101, October.
    6. S. Cipolla & C. Di Fiore & P. Zellini, 2020. "A variation of Broyden class methods using Householder adaptive transforms," Computational Optimization and Applications, Springer, vol. 77(2), pages 433-463, November.
    7. Saman Babaie-Kafaki & Reza Ghanbari, 2017. "A class of adaptive Dai–Liao conjugate gradient methods based on the scaled memoryless BFGS update," 4OR, Springer, vol. 15(1), pages 85-92, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:78:y:2021:i:1:d:10.1007_s10589-020-00239-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.