IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v166y2015i2d10.1007_s10957-014-0695-3.html
   My bibliography  Save this article

Mathematical Programs with Complementarity Constraints in Banach Spaces

Author

Listed:
  • Gerd Wachsmuth

    (Technische Universität Chemnitz)

Abstract

We consider optimization problems in Banach spaces involving a complementarity constraint, defined by a convex cone K. By transferring the local decomposition approach, we define strong stationarity conditions and provide a constraint qualification, under which these conditions are necessary for optimality. To apply this technique, we provide a new uniqueness result for Lagrange multipliers in Banach spaces. In the case that the cone K is polyhedral, we show that our strong stationarity conditions possess a reasonable strength. Finally, we generalize to the case where K is not a cone and apply the theory to two examples.

Suggested Citation

  • Gerd Wachsmuth, 2015. "Mathematical Programs with Complementarity Constraints in Banach Spaces," Journal of Optimization Theory and Applications, Springer, vol. 166(2), pages 480-507, August.
  • Handle: RePEc:spr:joptap:v:166:y:2015:i:2:d:10.1007_s10957-014-0695-3
    DOI: 10.1007/s10957-014-0695-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-014-0695-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-014-0695-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M.L. Flegel & C. Kanzow, 2005. "Abadie-Type Constraint Qualification for Mathematical Programs with Equilibrium Constraints," Journal of Optimization Theory and Applications, Springer, vol. 124(3), pages 595-614, March.
    2. Jean-Baptiste Hiriart-Urruty & Jérôme Malick, 2012. "A Fresh Variational-Analysis Look at the Positive Semidefinite Matrices World," Journal of Optimization Theory and Applications, Springer, vol. 153(3), pages 551-577, June.
    3. K. Krumbiegel & A. Rösch, 2009. "A virtual control concept for state constrained optimal control problems," Computational Optimization and Applications, Springer, vol. 43(2), pages 213-233, June.
    4. Holger Scheel & Stefan Scholtes, 2000. "Mathematical Programs with Complementarity Constraints: Stationarity, Optimality, and Sensitivity," Mathematics of Operations Research, INFORMS, vol. 25(1), pages 1-22, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nguyen Huy Chieu & Gue Myung Lee, 2014. "Constraint Qualifications for Mathematical Programs with Equilibrium Constraints and their Local Preservation Property," Journal of Optimization Theory and Applications, Springer, vol. 163(3), pages 755-776, December.
    2. Jane J. Ye & Jin Zhang, 2014. "Enhanced Karush–Kuhn–Tucker Conditions for Mathematical Programs with Equilibrium Constraints," Journal of Optimization Theory and Applications, Springer, vol. 163(3), pages 777-794, December.
    3. Christian Kanzow & Alexandra Schwartz, 2014. "Convergence properties of the inexact Lin-Fukushima relaxation method for mathematical programs with complementarity constraints," Computational Optimization and Applications, Springer, vol. 59(1), pages 249-262, October.
    4. Christian Kanzow & Alexandra Schwartz, 2015. "The Price of Inexactness: Convergence Properties of Relaxation Methods for Mathematical Programs with Complementarity Constraints Revisited," Mathematics of Operations Research, INFORMS, vol. 40(2), pages 253-275, February.
    5. Jean-Pierre Dussault & Mounir Haddou & Abdeslam Kadrani & Tangi Migot, 2020. "On Approximate Stationary Points of the Regularized Mathematical Program with Complementarity Constraints," Journal of Optimization Theory and Applications, Springer, vol. 186(2), pages 504-522, August.
    6. Yi Zhang & Jia Wu & Liwei Zhang, 2015. "First order necessary optimality conditions for mathematical programs with second-order cone complementarity constraints," Journal of Global Optimization, Springer, vol. 63(2), pages 253-279, October.
    7. Nguyen Huy Chieu & Gue Myung Lee, 2013. "A Relaxed Constant Positive Linear Dependence Constraint Qualification for Mathematical Programs with Equilibrium Constraints," Journal of Optimization Theory and Applications, Springer, vol. 158(1), pages 11-32, July.
    8. Balendu Bhooshan Upadhyay & Arnav Ghosh, 2023. "On Constraint Qualifications for Mathematical Programming Problems with Vanishing Constraints on Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 199(1), pages 1-35, October.
    9. Zhang, Fang & Lu, Jian & Hu, Xiaojian & Meng, Qiang, 2023. "Integrated deployment of dedicated lane and roadside unit considering uncertain road capacity under the mixed-autonomy traffic environment," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    10. Andreas Ehrenmann & Karsten Neuhoff, 2009. "A Comparison of Electricity Market Designs in Networks," Operations Research, INFORMS, vol. 57(2), pages 274-286, April.
    11. Gui-Hua Lin & Mei-Ju Luo & Jin Zhang, 2016. "Smoothing and SAA method for stochastic programming problems with non-smooth objective and constraints," Journal of Global Optimization, Springer, vol. 66(3), pages 487-510, November.
    12. Lei Guo & Gui-Hua Lin & Jane J. Ye, 2015. "Solving Mathematical Programs with Equilibrium Constraints," Journal of Optimization Theory and Applications, Springer, vol. 166(1), pages 234-256, July.
    13. Tao Tan & Yanyan Li & Xingsi Li, 2011. "A Smoothing Method for Zero–One Constrained Extremum Problems," Journal of Optimization Theory and Applications, Springer, vol. 150(1), pages 65-77, July.
    14. S. Dempe & S. Franke, 2016. "On the solution of convex bilevel optimization problems," Computational Optimization and Applications, Springer, vol. 63(3), pages 685-703, April.
    15. A. F. Izmailov & M. V. Solodov, 2002. "The Theory of 2-Regularity for Mappings with Lipschitzian Derivatives and its Applications to Optimality Conditions," Mathematics of Operations Research, INFORMS, vol. 27(3), pages 614-635, August.
    16. Filippo Pecci & Edo Abraham & Ivan Stoianov, 2017. "Penalty and relaxation methods for the optimal placement and operation of control valves in water supply networks," Computational Optimization and Applications, Springer, vol. 67(1), pages 201-223, May.
    17. Birbil, S.I. & Bouza, G. & Frenk, J.B.G. & Still, G.J., 2003. "Equilibrium Constrained Optimization Problems," ERIM Report Series Research in Management ERS-2003-085-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    18. A. Izmailov & M. Solodov, 2009. "Examples of dual behaviour of Newton-type methods on optimization problems with degenerate constraints," Computational Optimization and Applications, Springer, vol. 42(2), pages 231-264, March.
    19. Winterfeld, Anton, 2008. "Application of general semi-infinite programming to lapidary cutting problems," European Journal of Operational Research, Elsevier, vol. 191(3), pages 838-854, December.
    20. M. Hintermüller & I. Kopacka, 2011. "A smooth penalty approach and a nonlinear multigrid algorithm for elliptic MPECs," Computational Optimization and Applications, Springer, vol. 50(1), pages 111-145, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:166:y:2015:i:2:d:10.1007_s10957-014-0695-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.